K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2021

Áp dụng giả thiết x + y = 1, ta có: \(P=\left(1-\frac{1}{x^2}\right)\left(1-\frac{1}{y^2}\right)=1-\frac{1}{x^2}-\frac{1}{y^2}+\frac{1}{x^2y^2}=1-\frac{1}{\left(1-y\right)^2}-\frac{1}{y^2}+\frac{1}{\left(1-y\right)^2y^2}\)

Ta cần chứng minh: \(1-\frac{1}{\left(1-y\right)^2}-\frac{1}{y^2}+\frac{1}{\left(1-y\right)^2y^2}\ge9\)(*)

(*)\(\Leftrightarrow\frac{-2y\left(y-1\right)\left(2y-1\right)^2}{\left(1-y\right)^2y^2}\ge0\)*đúng do \(-2y\left(y-1\right)\left(2y-1\right)^2=-2y.\left(-x\right)\left(2y-1\right)^2=2xy\left(2y-1\right)^2\ge0\)*

Vậy \(P\ge9\)

Đẳng thức xảy ra khi \(x=y=\frac{1}{2}\)

4 tháng 1 2021

Bài này ko cần biến đổi phức tạp làm mày như cách 1 của mình, mình sẽ trình bày cách 2 dễ hiểu hơn

\(P=\frac{\left(x^2-1\right)\left(y^2-1\right)}{x^2y^2}=\frac{\left(x-1\right)\left(x+1\right)\left(y-1\right)\left(y+1\right)}{x^2y^2}\)\(=\frac{\left(-y\right).\left(x+1\right).\left(-x\right).\left(y+1\right)}{x^2y^2}=\frac{\left(x+1\right)\left(y+1\right)}{xy}\)\(=1+\frac{1}{x}+\frac{1}{y}+\frac{1}{xy}\ge1+\frac{4}{x+y}+\frac{4}{\left(x+y\right)^2}=9\)

Done!

22 tháng 3 2021

\(\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)=1+\frac{1}{y}+\frac{1}{x}+\frac{1}{xy}=1+\left(\frac{1}{x}+\frac{1}{y}\right)+\frac{1}{xy}\)

Áp dụng bất đẳng thức Bunyakovsky dạng phân thức ta có :

\(\frac{1}{x}+\frac{1}{y}\ge\frac{\left(1+1\right)^2}{x+y}=\frac{4}{1}=4\)(1)

Áp dụng bất đẳng thức AM-GM ta có :

\(xy\le\left(\frac{x+y}{2}\right)^2=\frac{1}{4}\Rightarrow\frac{1}{xy}\ge4\)(2)

Từ (1) và (2) => \(\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)=1+\left(\frac{1}{x}+\frac{1}{y}\right)+\frac{1}{xy}\ge1+4+4=9\left(đpcm\right)\)

Đẳng thức xảy ra <=> x = y = 1/2

6 tháng 11 2018

hùi nãy mem nào k sai cho t T_T t buồn 

\(VT\ge6\left(x^2+y^2+z^2+2xy+2yz+2zx\right)-2\left(xy+yz+zx\right)+2.\frac{9}{4\left(x+y+z\right)}\)

\(=6\left(x+y+z\right)^2-2.\frac{\left(x+y+z\right)^2}{3}+\frac{9}{2\left(x+y+z\right)}=6.\left(\frac{3}{4}\right)^2-2.\frac{\left(\frac{3}{4}\right)^2}{3}+\frac{9}{2.\frac{3}{4}}\)

\(=\frac{27}{8}-\frac{3}{8}+6=9\)

\(\Rightarrow\)\(VT\ge9\) ( đpcm ) 

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z=\frac{1}{4}\)

Chúc bạn học tốt ~ 

6 tháng 11 2018

\(ab+bc+ca\le a^2+b^2+c^2\le\frac{\left(a+b+c\right)^2}{3}\) ( bđt phụ + Cauchy-Schwarz dạng Engel ) 

Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c\)

CM bđt phụ : \(x^2+y^2+z^2\ge xy+yz+zx\)

\(\Leftrightarrow\)\(2x^2+2y^2+2z^2\ge2xy+2yz+2zx\)

\(\Leftrightarrow\)\(2x^2+2y^2+2z^2-2xy-2yz-2zx\ge0\)

\(\Leftrightarrow\)\(\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)\ge0\)

\(\Leftrightarrow\)\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\) ( luôn đúng ) 

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z\)

Chúc bạn học tốt ~ 

21 tháng 8 2017

a/ có \(a^2+b^2+c^2+\frac{3}{4}\ge-\left(a+b+c\right)\)

\(\Leftrightarrow a^2+a+\frac{1}{4}+b^2+b+\frac{1}{4}+c^2+c+\frac{1}{4}\ge0\)

\(\Leftrightarrow\left(a+\frac{1}{2}\right)^2+\left(b+\frac{1}{2}\right)^2+\left(c+\frac{1}{2}\right)^2\ge0\) (luôn đúng với mọi a,b,c)

b/ \(2a^2+2b^2+8-2ab+4\left(a+b\right)\ge0\)

\(\Leftrightarrow a^2+4a+4+b^2+4b+4+a^2+2ab+b^2\ge0\)

\(\Leftrightarrow\left(a+2\right)^2+\left(b+2\right)^2+\left(a+b\right)^2\ge0\)(luôn đúng)

bài 2 áp dụng bất đẳng thức cô si cho 3 số dương ta có 

\(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\ge3\sqrt[3]{\frac{x}{y}\cdot\frac{y}{z}\cdot\frac{z}{x}}=3\)

bài 3: giả sử \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)

\(\Leftrightarrow\frac{x}{y}+\frac{y}{x}+\frac{x}{z}+\frac{z}{x}+\frac{y}{z}+\frac{z}{y}\ge6\)

áp dụng bất đẳng thức cô si cho 2 số dương ta có

\(\frac{x}{y}+\frac{y}{x}\ge2\)cmtt \(\Rightarrow\frac{x}{y}+\frac{y}{x}+\frac{z}{x}+\frac{x}{z}+\frac{y}{z}+\frac{z}{y}\ge6\)

áp dụng bất đăng thức trên ta đc

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=9\)

bái 4: áp dụng bất đẳng thức cô si cho từng cái, nhân vế theo vế là đc nhé bn

28 tháng 6 2019

Ta có  : \(\frac{1+x}{2}\ge\sqrt{x}\Rightarrow\left(\frac{1+x}{2}\right)^n\ge\sqrt{x^n}\) (1)

            \(\frac{1+y}{2}\ge\sqrt{y}\Rightarrow\left(\frac{1+y}{2}\right)^n\ge\sqrt{y^n}\)(2)

            \(\frac{1+z}{2}\ge\sqrt{z}\Rightarrow\left(\frac{1+z}{2}\right)^n\ge\sqrt{z^n}\)(3) 

Từ 1,2,3 \(\Rightarrow\left(\frac{1+x}{2}\right)^n+\left(\frac{1+y}{2}\right)^n+\left(\frac{1+z}{2}\right)^n\ge\sqrt{x^n}+\sqrt{y^n}+\sqrt{z^n}\)

Áp dụng BĐT Cauchy cho 3 số ta có : 

\(\sqrt{x^n}+\sqrt{y^n}+\sqrt{z^n}\ge3^3\sqrt{\sqrt{x^n}.\sqrt{y^n}.\sqrt{z^n}}=3\)

\(\Rightarrow\left(\frac{1+x}{2}\right)^n+\left(\frac{1+y}{2}\right)^n+\left(\frac{1+z}{2}\right)^n\ge3\)

Đẳng thức xảy ra <=> x = y = z = 1 

26 tháng 8 2016

Ta có:

\(1+x^2=xy+yz+zx+x^2=\left(x+y\right)\left(x+z\right)\)

\(1+y^2=xy+yz+xz+y^2=\left(y+z\right)\left(x+y\right)\)

\(1+z^2=xy+yz+xz+z^2=\left(x+z\right)\left(y+z\right)\)

Thay vào A được:

\(P=x\sqrt{\frac{\left(y+z\right)\left(x+y\right)\left(x+z\right)\left(y+z\right)}{\left(x+y\right)\left(x+z\right)}}+y\sqrt{\frac{\left(x+z\right)\left(y+z\right)\left(x+y\right)\left(x+z\right)}{\left(y+z\right)\left(x+y\right)}}\)\(+z\sqrt{\frac{\left(x+y\right)\left(y+z\right)\left(x+z\right)\left(x+y\right)}{\left(x+z\right)\left(y+z\right)}}\)

\(=x\sqrt{\left(y+z\right)^2}+y\sqrt{\left(x+z\right)^2}+z\sqrt{\left(x+y\right)^2}\)

\(=x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)\)

\(=xy+xz+xy+yz+xz+zy\)

\(=2\left(xy+yz+xz\right)\)

\(=2\)(do xy+yz+xz=1)

=>Đpcm

26 tháng 8 2016

Dạng toán này rất nhiều bạn hỏi rồi: thay \(xy+yz+zx=1\) vào các căn thức rồi phân tích đa thức thành nhân tử.

6 tháng 12 2019

\(\frac{1}{x^3\left(y+z\right)}+\frac{1}{y^3\left(z+x\right)}+\frac{1}{z^3\left(x+y\right)}\)

\(=\frac{y^2z^2}{x\left(y+z\right)}+\frac{z^2x^2}{y\left(z+x\right)}+\frac{x^2y^2}{z\left(x+y\right)}\)

\(\ge\frac{\left(xy+yz+zx\right)^2}{2\left(xy+yz+zx\right)}=\frac{xy+yz+zx}{2}\ge\frac{3\sqrt[3]{x^2y^2z^2}}{2}=\frac{3}{2}\)

2 tháng 3 2018

1/ Theo đề bài thì \(x+y=1\)

\(\Rightarrow x,y< 1\)

Ta chứng minh

\(\frac{\left(1-y\right)}{1-\left(1-y\right)^2}+\frac{y}{1-y^2}-\frac{4}{3}\ge0\)

\(\Leftrightarrow4y^4-8y^3-7y^3+11y-3\le0\)

\(\Leftrightarrow\left(2y-1\right)^2\left(y^2-y-3\right)\le0\) đúng

9 tháng 3 2016

Theo bất đẳng thức Cô-Si, ta có \(1=x+y\ge2\sqrt{xy}\to xy\le\frac{1}{4}.\) Do vậy áp dụng bất đẳng thức Cô-Si 

\(xy+\frac{1}{xy}=xy+\frac{1}{16xy}+\frac{15}{16xy}\ge2\sqrt{xy\cdot\frac{1}{16xy}}+\frac{15}{16\cdot\frac{1}{4}}=\frac{17}{4}.\)

a. Ta có \(M=\left(xy\right)^2+\frac{1}{\left(xy\right)^2}+2=\left(xy+\frac{1}{xy}\right)^2\ge\left(\frac{17}{4}\right)^2=\frac{289}{16}.\)  Dấu bằng xảy ra khi \(x=y=\frac{1}{2}.\) Vây giá trị bé nhất của M là \(\frac{289}{16}.\)
b.  Theo bất đẳng thức Cô-Si 

\(N\ge2\left(x+\frac{1}{x}\right)\left(y+\frac{1}{y}\right)=2\left(xy+\frac{1}{xy}\right)+2\left(\frac{x}{y}+\frac{y}{x}\right)\ge2\cdot\frac{17}{4}+4\sqrt{\frac{x}{y}\cdot\frac{y}{x}}=\frac{25}{2}.\)

Dấu bằng xảy ra khi và chỉ \(x=y=\frac{1}{2}.\)