K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2021

Có: \(1=\left(a+b\right)^2\le\left(a^2+b^2\right)\left(1+1\right)=2\left(a^2+b^2\right)\)

Theo bđt Bunhiacopxki có: \(\left(\text{ax}+by\right)\le\left(a^2+b^2\right)\left(x^2+y^2\right)\)

Dấu '=' xảy ra khi ay=bx

\(\Rightarrow\left(a^2+b^2\right)\ge\frac{1}{2}\Rightarrow\left(a^2+b^2\right)^2\ge\frac{1}{4}\)

Dấu '=' xảy ra khi a=b=1/2

Khi đó : \(P=1:\frac{1}{4}+40.\frac{1}{8}=9\)

18 tháng 2 2021

một cách khác :))

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(a^4+b^4=\frac{a^4}{1}+\frac{b^4}{1}\ge\frac{\left(a^2+b^2\right)^2}{2}\)(1)

Tiếp tục áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(a^2+b^2=\frac{a^2}{1}+\frac{b^2}{1}\ge\frac{\left(a+b\right)^2}{2}=\frac{1^2}{2}=\frac{1}{2}\)(2)

Từ (1) và (2) => \(a^4+b^4\ge\frac{\left(a^2+b^2\right)^2}{2}\ge\frac{\left(\frac{1}{2}\right)^2}{2}=\frac{1}{8}\)(3)

Theo bất đẳng thức AM-GM ta có \(ab\le\left(\frac{a+b}{2}\right)^2=\left(\frac{1}{2}\right)^2=\frac{1}{4}\)=> \(\frac{1}{ab}\ge4\)(4)

Từ (3) và (4) => \(P=\frac{1}{ab}\cdot40\left(a^4+b^4\right)\ge4\cdot40\cdot\frac{1}{8}=20\)

Đẳng thức xảy ra <=> a = b = 1/2

Vậy MinP = 20

Áp dụng bđt Bunhiacopski ta có

\(A=3\left(\frac{a^2}{a+1}+\frac{b^2}{b+1}\right)\ge3.\frac{\left(a+b\right)^2}{2+a+b}=\frac{3}{3}=1.\)

Dấu ''='' xảy ra khi \(a=b=\frac{1}{2}\)

30 tháng 4 2019

ko ph đây là svac à

20 tháng 2 2016

\(Q=2+\left(\frac{a}{b}+\frac{b}{a}\right)\ge2+2\sqrt{\frac{a}{b}.\frac{b}{a}}=4\)

Q min = 4 khi a =b

29 tháng 1 2020

\(1,M=a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2\left(a+b\right)\)

\(=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2\left(a+b\right)\)

\(=\left(a+b\right)\left[\left(a+b\right)^2-3ab\right]+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2\left(a+b\right)\)

Thay \(a+b=1\) vào ta được:

\(1\left(1-3ab\right)+3ab\left(1-2ab\right)+6a^2b^2\)

\(=1-3ab+3ab-6a^2b^2+6a^2b^2\)

\(=1\)

Vậy ......................

1. Chứng minh rằng \(5^{8^{2006}}\) \(+\)\(5\) chia hết cho 62. Tìm nghiệm nguyên dương của phương trình \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)3.Cho biểu thức:P= \(\left(\frac{\sqrt{a}+1}{\sqrt{ab}+1}+\frac{\sqrt{ab}+\sqrt{a}}{\sqrt{ab-1}}-1\right):\left(\frac{\sqrt{a}+1}{\sqrt{ab}+1}-\frac{\sqrt{ab}+\sqrt{a}}{\sqrt{ab}-1}+1\right)\)a) Rút gọn Pb) Cho a+b =1. Tìm giá trị nhỏ nhất của P4. Cho a,b,c là các số thực dương thỏa mãn điều kiện abc =...
Đọc tiếp

1. Chứng minh rằng \(5^{8^{2006}}\) \(+\)\(5\) chia hết cho 6

2. Tìm nghiệm nguyên dương của phương trình \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)

3.Cho biểu thức:

P= \(\left(\frac{\sqrt{a}+1}{\sqrt{ab}+1}+\frac{\sqrt{ab}+\sqrt{a}}{\sqrt{ab-1}}-1\right):\left(\frac{\sqrt{a}+1}{\sqrt{ab}+1}-\frac{\sqrt{ab}+\sqrt{a}}{\sqrt{ab}-1}+1\right)\)

a) Rút gọn P

b) Cho a+b =1. Tìm giá trị nhỏ nhất của P

4. Cho a,b,c là các số thực dương thỏa mãn điều kiện abc = 1.Tìm giá trị nhỏ nhất của biểu thức

P= \(\frac{bc}{a^2b+a^2c}+\frac{ca}{b^2c+b^2a}+\frac{ab}{c^2a+c^2b}\)

5. Tìm các số nguyên x,y thỏa mãn hằng đẳng thức:

\(2xy^2+x+y+1=x^2+2y^2+xy\)

6. Đa thức \(F\left(x\right)\)chia cho \(x+1\)dư 4, chia cho \(x^2+1\)dư \(2x+3\). Tìm đa thức dư khi \(F\left(x\right)\) chia cho \(\left(x+1\right)\left(x^2+1\right)\)

Giúp em ạ. Giải từng câu cũng được ạ. Mai em nộp bài rồi. 

1
9 tháng 2 2017

\(P=\frac{\frac{1}{a^2}}{\frac{1}{b}+\frac{1}{c}}+\frac{\frac{1}{b^2}}{\frac{1}{a}+\frac{1}{c}}+\frac{\frac{1}{c^2}}{\frac{1}{a}+\frac{1}{b}}\)

Đặt \(\hept{\begin{cases}x=\frac{1}{a}\\y=\frac{1}{b}\\z=\frac{1}{c}\end{cases}}\Rightarrow xyz=1\Rightarrow P=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\)

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có: 

\(P\ge\frac{\left(x+y+z\right)^2}{y+z+x+z+x+y}=\frac{x+y+z}{2}\ge\frac{3\sqrt[3]{xyz}}{2}=\frac{3}{2}\)

Dấu "=" xảy ra khi \(x=y=z\Leftrightarrow a=b=c=1\)

Cần cách khác thì nhắn cái

1 tháng 9 2020

Ta có  \(a+b+c\ge3\sqrt[3]{abc}\Leftrightarrow3\ge3\sqrt[3]{abc}\Leftrightarrow\sqrt[3]{abc}\le1\Leftrightarrow abc\le1\)(bđt AM-GM)

Khi đó \(P=2\left(ab+bc+ca\right)-abc\ge2\left(ab+bc+ca\right)-1\)

\(=2\left(\frac{abc}{c}+\frac{abc}{a}+\frac{abc}{b}\right)-1=2\left[abc\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\right]-1\)

\(=2abc\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-1=2.\frac{\left(1+1+1\right)^2}{a+b+c}-1=\frac{2.9}{3}-1=5\)

Đẳng thức xảy ra khi và chỉ khi \(a=b=c=1\)

Vậy GTNN của \(P=5\)đạt được khi \(a=b=c=1\)

p/s : nói chung hướng làm là vậy thôi :v chứ minh làm sai chỗ nào rồi ý 

21 tháng 3 2021

Dễ dàng chứng minh được: 

\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)với \(x,y>0\)(1)

Dấu bằng xảy ra \(\Leftrightarrow x=y>0\)

Ta có:

\(\frac{a}{bc\left(a+1\right)}=\frac{a}{abc+bc}=\frac{a}{ab+bc+ca+bc}=\frac{a}{\left(ab+bc\right)+\left(bc+ca\right)}\)

Áp dụng (1), ta được:

\(\frac{1}{ab+bc}+\frac{1}{bc+ca}\ge\frac{4}{\left(ab+bc\right)+\left(bc+ca\right)}\)

\(\Leftrightarrow\frac{1}{4\left(ab+bc\right)}+\frac{1}{4\left(bc+ca\right)}\ge\frac{1}{ab+bc+bc+ca}\)

\(\Leftrightarrow\frac{a}{4}\left(\frac{1}{ab+bc}+\frac{1}{bc+ca}\right)\ge\frac{a}{ab+bc+bc+ca}\)

\(\Leftrightarrow\frac{a}{4}\left(\frac{1}{ab+bc}+\frac{1}{bc+ca}\right)\ge\frac{a}{bc\left(a+1\right)}\left(2\right)\)

Dấu bằng xảy ra \(\Leftrightarrow b=c>0\)

Chúng minh tương tự, ta được:

\(\frac{b}{4}\left(\frac{1}{ab+ca}+\frac{1}{bc+ca}\right)\ge\frac{b}{ca\left(b+1\right)}\left(3\right)\)

Dấu bằng xảu ra \(\Leftrightarrow a=c>0\).

\(\frac{c}{4}\left(\frac{1}{ac+ab}+\frac{1}{ab+bc}\right)\ge\frac{c}{ab\left(c+1\right)}\left(4\right)\)

Từ (2), (3) và (4), ta được:

\(\frac{a}{bc\left(a+1\right)}+\frac{b}{ca\left(b+1\right)}+\frac{c}{ab\left(c+1\right)}\le\)\(\frac{a}{4}\left(\frac{1}{ab+bc}+\frac{1}{bc+ac}\right)+\frac{b}{4}\left(\frac{1}{ac+bc}+\frac{1}{ac+ab}\right)\)\(+\frac{c}{4}\left(\frac{1}{ab+bc}+\frac{1}{ab+ac}\right)\)

\(\Leftrightarrow P\le\frac{1}{4}.\left(\frac{a}{ab+bc}+\frac{c}{ab+bc}\right)+\frac{1}{4}\left(\frac{a}{bc+ac}+\frac{b}{bc+ac}\right)\)\(+\frac{1}{4}\left(\frac{b}{ab+ac}+\frac{c}{ab+ac}\right)\)

\(\Leftrightarrow P\le\frac{a+c}{4\left(ab+bc\right)}+\frac{a+b}{4\left(bc+ac\right)}+\frac{b+c}{4\left(ab+ac\right)}\)

\(\Leftrightarrow P\le\frac{a+c}{4b\left(a+c\right)}+\frac{a+b}{4c\left(a+b\right)}+\frac{b+c}{4a\left(b+c\right)}\)

\(\Leftrightarrow P\le\frac{1}{4b}+\frac{1}{4c}+\frac{1}{4a}\)

\(\Leftrightarrow P\le\frac{1}{4}\left(\frac{ab+bc+ca}{abc}\right)\)

\(\Leftrightarrow P\le\frac{1}{4}.\frac{abc}{abc}=\frac{1}{4}.1=\frac{1}{4}\)( vì \(ab+bc+ca=abc\))

Dấu bằng xảy ra

\(\Leftrightarrow\hept{\begin{cases}a=b=c>0\\ab+bc+ca=abc\end{cases}}\Leftrightarrow a=b=c=3\)

Vậy \(minP=\frac{1}{4}\Leftrightarrow a=b=c=3\)

25 tháng 12 2021

\(a^4+b^4\\ =\left(a^4+2a^2b^2+b^4\right)-2a^2b^2\\ =\left(a^2+b^2\right)^2-2a^2b^2\\ =\left[\left(a^2+2ab+b^2\right)-2ab\right]^2-2a^2b^2\\ =\left[\left(a+b\right)^2-2ab\right]^2-2a^2b^2\\ =\left(a+b\right)^4-4ab\left(a+b\right)^2+4a^2b^2-2a^2b^2\\ =\left(-4\right)^4-4\left(-12\right)\left(-4\right)^2+2a^2b^2\\ =256+768+2\left(-12\right)^2\\ =256+768+288\\ =1312\)