\(\left(\frac{ab+1}{a+b}\right)^2\ge2\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2021

Đặt A =\(a^2+b^2+\left(\frac{ab+1}{a+b}\right)^2\)

Vì a + b \(\ne\)0 nên A luôn được xác định.

 Giả sử \(a^2+b^2+\left(\frac{ab+1}{a+b}\right)^2\ge2\)

\(\Leftrightarrow\frac{\left(a^2+b^2\right)\left(a+b\right)^2}{\left(a+b\right)^2}+\frac{\left(ab+1\right)^2}{\left(a+b\right)^2}-\frac{2\left(a+b\right)^2}{\left(a+b\right)^2}\ge0\)

\(\Leftrightarrow\left(a^2+b^2\right)\left(a+b\right)^2+\left(ab+1\right)^2-2\left(a+b\right)^2\ge0\)(vì a + b \(\ne\)0)

\(\Leftrightarrow[\left(a^2+2ab+b^2\right)-2ab]\left(a+b\right)^2+\left(ab+1\right)^2-2\left(a+b\right)^2\ge0\)

\(\Leftrightarrow[\left(a+b\right)^2-2ab]\left(a+b\right)^2+\left(ab+1\right)^2-2\left(a+b\right)^2\ge0\)

\(\Leftrightarrow\left(a+b\right)^4-2ab\left(a+b\right)^2+\left(ab+1\right)^2-2\left(a+b\right)^2\ge0\)

\(\Leftrightarrow\left(a+b\right)^4-\left[2ab\left(a+b\right)^2+2\left(a+b\right)^2\right]+\left(ab+1\right)^2\ge0\)

\(\Leftrightarrow\left[\left(a+b\right)^2\right]^2-2\left(a+b\right)^2\left(ab+1\right)+\left(ab+1\right)^2\ge0\)

\(\left[\left(a+b\right)^2-\left(ab+1\right)^2\right]^2\ge0\)(luôn đúng)

Dấu bằng xảy ra 

\(\Leftrightarrow\hept{\begin{cases}a+b\ne0\\\Leftrightarrow a=b\end{cases}}\Leftrightarrow a=b\left(a,b\ne0\right)\)

Vậy \(a^2+b^2+\left(\frac{ab+1}{a+b}\right)^2\ge\)2 với a, b là các số thỏa mãn a+b \(\ne\)0

27 tháng 2 2021

Dấu bằng xảy ra

\(\Leftrightarrow\hept{\begin{cases}a=b\\a+b\ne0\end{cases}\Leftrightarrow a=b}\)(a,b \(\ne\)0)

Vậy \(a^2+b^2+\left(\frac{ab+1}{a+b}\right)^2\ge2\) với a, b là các số thỏa mãn \(a+b\ne0\)

1 tháng 2 2019

\(\frac{1}{a^2}=\frac{1}{\left(bc\right)^2}\)

\(\Rightarrow\frac{1}{a^2}+1=\frac{1}{\left(bc\right)^2}+1\ge2\frac{1}{bc}=2a\)

1 tháng 2 2019

Bạn Hoàng sai rồi nhé: 

cho \(a=\frac{3}{2};b=2;c=\frac{1}{3}\) (t/m đk abc=1)

Suy ra \(a+b+c=\frac{3}{2}+2+\frac{1}{3}=3,8\left(3\right)>3\) nhé

Ta có: \(a^2+b^2+\left(\frac{ab+1}{a+b}\right)^2\ge2\)

\(\Leftrightarrow\left(a^2+b^2\right)\left(a+b\right)^2+\left(ab+1\right)^2\ge2\left(a+b\right)^2\)

\(\Leftrightarrow\left(a+b\right)^2\left[\left(a+b\right)^2-2ab\right]-2\left(a+b\right)^2+\left(ab+1\right)^2\ge0\)

\(\Leftrightarrow\left(a+b\right)^4-2ab\left(a+b\right)^2-2\left(a+b\right)^2+\left(ab+1\right)^2\ge0\)

\(\Leftrightarrow\left[\left(a+b\right)^2-ab-1\right]^2\ge0\)(đúng) 

\(\Leftrightarrow dpcm\)

13 tháng 12 2017

⇔(a2+b2)(a+b)2+(ab+1)2≥2(a+b)2

⇔(a+b)2[(a+b)2−2ab]−2(a+b)2+(ab+1)2≥0

⇔(a+b)4−2ab(a+b)2−2(a+b)2+(ab+1)2≥0

⇔[(a+b)2−ab−1]2≥0(đúng) 

           k mình đi

31 tháng 1 2017

BĐT tương đương

\(a^2+b^2+\frac{a^2b^2+2ab+1}{\left(a+b\right)^2}\ge2\)

<=>\(\left(a+b\right)^2-2+\frac{1}{\left(a+b\right)^2}+\frac{a^2b^2}{\left(a+b\right)^2}+\frac{2ab}{\left(a+b\right)^2}-2ab\ge0\)

<=>\(\left(a+b\right)^2-2.\left(a+b\right).\frac{1}{a+b}+\frac{a^2b^2}{\left(a+b\right)^2}-2.\left(ab-\frac{ab}{\left(a+b\right)^2}\right)\ge0\)

<=>\(\left(a+b-\frac{1}{a+b}\right)^2+\frac{a^2b^2}{\left(a+b\right)^2}-2.\left(\frac{ab\left(a+b\right)^2-ab}{\left(a+b\right)^2}\right)\ge0\)

<=>\(\left(\frac{\left(a+b\right)^2-1}{a+b}\right)^2+\frac{a^2b^2}{\left(a+b\right)^2}-2.\left(\frac{ab\left[\left(a+b\right)^2-1\right]}{\left(a+b\right)\left(a+b\right)}\right)\ge0\)

<=>\(\left(\frac{\left(a+b\right)^2-1}{a+b}\right)^2+\frac{a^2b^2}{\left(a+b\right)^2}-2.\frac{\left(a+b\right)^2-1}{a+b}.\frac{ab}{a+b}\ge0\)

<=>\(\left(\frac{\left(a+b\right)^2-1}{a+b}-\frac{ab}{a+b}\right)^2\ge0\left(\text{luôn đúng}\right)\)

=> dpcm

30 tháng 7 2020

1. Áp dụng BĐT Cauchy dạng Engle, ta có :

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)

\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\left(a+b+c\right)\left(\frac{9}{a+b+c}\right)\)

\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

30 tháng 7 2020

\(\frac{1}{3}\left(a^3+b^3+a+b\right)+ab\le a^2+b^2+1\)

\(\Leftrightarrow\frac{1}{3}\left(a+b\right)\left(a^2+b^2+1-ab\right)+ab\le a^2+b^2+1\)

\(\Leftrightarrow\left(a^2+b^2+1\right)\left(\frac{a+b}{3}-1\right)-ab\left(\frac{a+b}{3}-1\right)\le0\)

\(\Leftrightarrow\left(a^2+b^2+1-ab\right)\left(\frac{a+b}{3}-1\right)\le0\)

Vì a, b dương \(\Rightarrow a^2+b^2+1-ab>0\Rightarrow\left(\frac{a+b}{3}-1\right)\le0\Leftrightarrow a+b\le3\)

\(M=\frac{a^2+8}{a}+\frac{b^2+2}{b}=a+\frac{8}{a}+b+\frac{2}{b}=2a+2b+\frac{8}{a}+\frac{2}{b}-\left(a+b\right)\ge8+4-3=9\)

Áp dụng BĐT Cauchy cho a ; b dương

Dấu "=" xảy ra \(\Leftrightarrow a=2;b=1\)

22 tháng 5 2017

mời anh giúp em câu này

(x2+1)2+3x (x2+1)2+2x2=0

 

 

x3+6x+12x +8x3 -21=0

đó 2 câu này thôi

30 tháng 8 2019

Đặt \(\left(\frac{a-b}{c},\frac{b-c}{a},\frac{c-a}{b}\right)\rightarrow\left(x,y,z\right)\)

Khi đó:\(\left(\frac{c}{a-b},\frac{a}{b-c},\frac{b}{c-a}\right)\rightarrow\left(\frac{1}{x},\frac{1}{y},\frac{1}{z}\right)\)

Ta có:

\(P\cdot Q=\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=3+\frac{y+z}{x}+\frac{z+x}{y}+\frac{x+y}{z}\)

Mặt khác:\(\frac{y+z}{x}=\left(\frac{b-c}{a}+\frac{c-a}{b}\right)\cdot\frac{c}{a-b}=\frac{b^2-bc+ac-a^2}{ab}\cdot\frac{c}{a-b}\)

\(=\frac{c\left(a-b\right)\left(c-a-b\right)}{ab\left(a-b\right)}=\frac{c\left(c-a-b\right)}{ab}=\frac{2c^2}{ab}\left(1\right)\)

Tương tự:\(\frac{x+z}{y}=\frac{2a^2}{bc}\left(2\right)\)

\(=\frac{x+y}{z}=\frac{2b^2}{ac}\left(3\right)\)

Từ ( 1 );( 2 );( 3 ) ta có:
\(P\cdot Q=3+\frac{2c^2}{ab}+\frac{2a^2}{bc}+\frac{2b^2}{ac}=3+\frac{2}{abc}\left(a^3+b^3+c^3\right)\)

Ta có:\(a+b+c=0\)

\(\Rightarrow\left(a+b\right)^3=-c^3\)

\(\Rightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\)

\(\Rightarrow a^3+b^3+c^3=3abc\)

Khi đó:\(P\cdot Q=3+\frac{2}{abc}\cdot3abc=9\)

30 tháng 8 2019

Mách mk nốt 2 bài kia vs

30 tháng 8 2019

3/ Ta có:

\(x+y+z=0\)

\(\Rightarrow x^2=\left(y+z\right)^2;y^2=\left(z+x\right)^2;z^2=\left(x+y\right)^2\)

\(a+b+c=0\)

\(\Rightarrow a+b=-c;b+c=-a;c+a=-b\)

\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\)

\(\Leftrightarrow ayz+bxz+cxy=0\)

Ta có:

\(ax^2+by^2+cz^2=a\left(y+z\right)^2+b\left(z+x\right)^2+c\left(x+y\right)^2\)

\(=x^2\left(b+c\right)+y^2\left(c+a\right)+z^2\left(a+b\right)+2\left(ayz+bzx+cxy\right)\)

\(=-ax^2-by^2-cz^2\)

\(\Leftrightarrow2\left(ax^2+by^2+cz^2\right)=0\)

\(\Leftrightarrow ax^2+by^2+cz^2=0\)

30 tháng 8 2019

1/ Đặt \(a-b=x,b-c=y,c-z=z\)

\(\Rightarrow x+y+z=0\)

Ta có:

\(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)

\(=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2\left(x+y+z\right)}{xyz}\)

\(=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\)