Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
\(Q=\frac{a^2-ab+b^2}{a^2+ab+b^2}\\ \Rightarrow Q(a^2+ab+b^2)=a^2-ab+b^2\)
$\Leftrightarrow a^2(Q-1)+a(Qb+b)+(Qb^2-b^2)=0(*)$
Vì $Q$ tồn tại nên PT $(*)$ luôn có nghiệm.
Điều này xảy ra khi:
$\Delta=(Qb+b)^2-4(Q-1)(Qb^2-b^2)\geq 0$
$\Leftrightarrow b^2(Q+1)^2-4b^2(Q-1)^2\geq 0$
$\Leftrightarrow (Q+1)^2-4(Q-1)^2\geq 0$
$\Leftrightarrow (Q+1-2Q+2)(Q+1+2Q-2)\geq 0$
$\Leftrightarrow (3-Q)(3Q-1)\geq 0$
$\Leftrightarrow \frac{1}{3}\leq Q\leq 3$
$\Rightarrow Q_{\min}=\frac{1}{3}; Q_{\max}=3$
ta có \(P=a^4+b^4+2-2-ab\)
AD BĐT cô si ta có
\(a^4+1\ge2a^2\) dấu = khi a=1
\(b^4+1\ge2b^2\) dấu = khi b =1
Khi đó \(P\ge2a^2+2b^2-2-ab\)
\(P\ge2\left(a^2+b^2+ab\right)-2-3ab\)
\(P\ge4-3ab\)( Thay \(a^2+b^2+ab=3\)vào ) (1)
mặt khác \(a^2+b^2\ge2ab\)
khi đó \(a^2+b^2+ab=3\ge2ab+ab=3ab\)
=> \(ab\le1\) (2)
từ (1) và (2)
ta có \(P\ge4-3ab\ge4-3=1\)
vậy P đạt GTNN là 1 khi a=b=1
Dạng này nhìn mệt vãi:(
Do b > 0 nên chia hai vế của giả thiết cho b, ta được: \(a+\frac{2}{b}\le1\)
Bây giờ đặt \(a=x;\frac{2}{b}=y\). Bài toán trở thành:
Cho x, y là các số dương thỏa mãn \(x+y\le1\). Tìm Min:
\(P=x+y+\frac{1}{x^2}+\frac{8}{y^2}\). Quen thuộc chưa:v
Ko biết có tính sai chỗ nào không, nhưng hướng làm là vậy đó!
maximize=3 khi b=-a
minimize =1/3 khi a=b
rảnh thì làm cho h fai ngủ r` (:|
Ta có \(Q=\frac{a^2-ab+b^2}{a^2+ab+b^2}=\frac{3a^2-3ab+3b^2}{3a^2+3ab+b^2}=\frac{a^2+ab+b^2+2a^2-4ab+2b^2}{3a^2+3ab+3b^2}\) \(=\frac{1}{3}+\frac{2\left(a-b\right)^2}{3a^2+3ab+3b^2}\)
. Xét \(a^2+ab+b^2\) \(=\left(a+\frac{1}{2}\right)^2+\frac{3}{4}>0\)
. Suy ra \(\frac{1}{3}+\frac{2\left(a-b\right)^2}{3a^2+3ab+3b^2}\ge\frac{1}{3}\) => \(MinQ=\frac{1}{3}\) khi \(a=b\)
. \(Q=\frac{a^2-ab+b^2}{a^2+ab+b^2}=\frac{3a^2+3ab+3b^2-2a^2-4ab-2b^2}{a^2+ab+b^2}\) \(=3-\frac{2\left(a+b\right)^2}{a^2+ab+b^2}\le3\)
. Suy ra \(MaxQ=3\) khi \(a=-b\)
. Kết luận ^^