K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2022

\(\Leftrightarrow\dfrac{x+10}{2012}+1+\dfrac{x+8}{2014}+1+\dfrac{x+6}{2016}+1+\dfrac{x+4}{2018}+1=0\)

\(\Leftrightarrow\dfrac{x+2022}{2012}+\dfrac{x+2022}{2014}+\dfrac{x+2022}{2016}+\dfrac{x+2022}{2018}=0\Leftrightarrow x=-2022\)

do 2 pt tương đường nhau nên x = -2022 cũng là nghiệm của pt 

\(\left(m-1\right)x+2020m-6=0\)

thay vào ta được : \(-2022\left(m-1\right)+2020m-6=0\)

\(\Leftrightarrow-2m+2022-6=0\Leftrightarrow-2m=-2016\Leftrightarrow m=1008\)

13 tháng 3 2022

\(\dfrac{1}{x+1}\)-\(\dfrac{5}{x-2}\)=\(\dfrac{15}{\left(x+1\right)\left(x-2\right)}\)

\(\Leftrightarrow\)\(\dfrac{x-2}{\left(x+1\right)\left(x-2\right)}\)-\(\dfrac{5\left(x+1\right)}{\left(x+1\right)\left(x-2\right)}\)=\(\dfrac{15}{\left(x+1\right)\left(x-2\right)}\)

\(\Leftrightarrow\)x-2-5(x+1)=15

\(\Leftrightarrow\) x-2-5x-5=15

\(\Leftrightarrow\)x-5x=15+2+5

\(\Leftrightarrow\)-4x=22

\(\Leftrightarrow\)x=-\(\dfrac{11}{2}\)

vậy

13 tháng 3 2022

nhớ like nhahaha

28 tháng 2 2021

`(x-2013)/2011+(x-2011)/2009=(x-2009)/2007+(x-2007)/2005`

`<=>(x-2013)/2011+1+(x-2011)/2009+1=(x-2009)/2007+1+(x-2007)/2005+1`

`<=>(x-2)/2011+(x-2)/2009=(x-2)/2007+(x-2)/2005`

`<=>(x-2)(1/2011+1/2009-1/2007-1/2005)=0`

`<=>x-2=0`

`<=>x=2`

PT tương đương khi cả 2 PT có cùng nghiệm

`=>(x^2-(2-m).x-2m)/(x-1)` tương đương nếu nhận `x=2` là nghiệm

Thay `x=2`

`<=>(4-(2-m).2-2m)/(2-1)=0`

`<=>4-4+2m-2m=0`

`<=>0=0` luôn đúng.

Vậy phương trình `(x-2013)/2011+(x-2011)/2009=(x-2009)/2007+(x-2007)/2005` và `(x^2-(2-m).x-2m)/(x-1)` luôn tương đương với nha `forall m`

28 tháng 2 2021

\(\left(1\right)\Leftrightarrow\dfrac{x-2013}{2011}+1+\dfrac{x-2011}{2009}+1=\dfrac{x-2009}{2007}+1+\dfrac{x-2007}{2005}+1\)

\(\Leftrightarrow\dfrac{x-2}{2011}+\dfrac{x-2}{2009}-\dfrac{x-2}{2007}-\dfrac{x-2}{2005}=0\)

\(\Leftrightarrow x-2=0\)

\(\Leftrightarrow x=2\)

(1) và (2) tương đương khi và chỉ khi (1) và (2) có cùng tập nghiệm khi và chỉ khi (2) có nghiệm duy nhất x = 2

<=> x2 - (2 - m)x - 2m = 0 có nghệm kép x = 2 (3) hoặc x2 - (2 - m)x - 2m = 0 có 2 nghiệm x = 1 và x = 2

Giải (3) ta có: \(\left\{{}\begin{matrix}\Delta=\left[-\left(2-m\right)\right]^2+8m=0\\2^2-2\left(2-m\right)-2m=0\end{matrix}\right.\)

<=> m2 + 4m + 4 = 0

<=> (m + 2)2 = 0

<=> m = -2

Giải (4) ta có:

\(\left\{{}\begin{matrix}2^2-2\left(2-m\right)-2m=0\\1^2-\left(2-m\right)-2m=0\end{matrix}\right.\)

<=> -m - 1 = 0

<=> m = -1

Vậy có 2 giá trị của m thoả mãn là -2 và -1

 

Hai phương trình này không tương đương vì chúng không có chung tập nghiệm

AH
Akai Haruma
Giáo viên
1 tháng 3 2021

Lời giải:

Xét PT(1):

\(\Leftrightarrow \frac{x-2013}{2011}+1+\frac{x-2011}{2009}+1=\frac{x-2009}{2007}+1+\frac{x-2007}{2005}+1\)

\(\Leftrightarrow \frac{x-2}{2011}+\frac{x-2}{2009}=\frac{x-2}{2007}+\frac{x-2}{2005}\)

\(\Leftrightarrow (x-2)\left(\frac{1}{2011}+\frac{1}{2009}-\frac{1}{2007}-\frac{1}{2005}\right)=0\)

Dễ thấy $\frac{1}{2011}+\frac{1}{2009}-\frac{1}{2007}-\frac{1}{2005}\neq 0$ nên $x-2=0$

$\Rightarrow x=2$Xét $(2)$:\(\Leftrightarrow \frac{(x-2)(x+m)}{x-1}=0\)

Để $(1);(2)$ là 2 PT tương đương thì $(2)$ chỉ có nghiệm $x=2$

Điều này xảy ra khi $x+m=x-1$ hoặc $x+m=x-2\Leftrightarrow m=-1$ hoặc $m=-2$

1 tháng 3 2021

Akai Haruma Giáo viên, mk không hiểu tại sao lại có m=-1, m=-2 vào nữa, mk tưởng với mọi m chứ??

 

a)Để biểu thức vô nghĩa thì \(\left[{}\begin{matrix}x+2=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=1\end{matrix}\right.\Leftrightarrow x\in\left\{-2;1\right\}\)

ĐKXĐ: \(\left\{{}\begin{matrix}x+2\ne0\\x-1\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne-2\\x\ne1\end{matrix}\right.\Leftrightarrow x\notin\left\{-2;1\right\}\)

b) Ta có: \(\dfrac{5x-2}{12}-\dfrac{2x^2+1}{8}=\dfrac{x-3}{6}+\dfrac{1-x^2}{4}\)

\(\Leftrightarrow\dfrac{2\left(5x-2\right)}{24}-\dfrac{3\left(2x^2+1\right)}{24}=\dfrac{4\left(x-3\right)}{24}+\dfrac{6\left(1-x^2\right)}{24}\)

\(\Leftrightarrow10x-4-6x^2-3=4x-12+6-6x^2\)

\(\Leftrightarrow-6x^2+10x-7+6x^2-4x+6=0\)

\(\Leftrightarrow6x-1=0\)

\(\Leftrightarrow6x=1\)

\(\Leftrightarrow x=\dfrac{1}{6}\)

Vậy: \(S=\left\{\dfrac{1}{6}\right\}\)

1:

a: x^3+x^2-3x-3=0

=>x^2(x+1)-3(x+1)=0

=>(x+1)(x^2-3)=0

=>x=-1 hoặc x^2-3=0

=>\(S_1=\left\{-1;\sqrt{3};-\sqrt{3}\right\}\)

2x+3=1

=>2x=-2

=>x=-1

=>S2={-1}

=>Hai phương trình này không tương đương.

1: \(\dfrac{1}{\left|x+1\right|}+\dfrac{1}{x+2}=3\left(1\right)\)

TH1: x>-1

Pt sẽ là \(\dfrac{1}{x+1}+\dfrac{1}{x+2}=3\)

=>\(\dfrac{x+2+x+1}{\left(x+1\right)\left(x+2\right)}=3\)

=>3(x+1)(x+2)=2x+3

=>3x^2+9x+6-2x-3=0

=>3x^2+7x+3=0

=>\(\left[{}\begin{matrix}x=\dfrac{-7-\sqrt{13}}{6}\left(loại\right)\\x=\dfrac{-7+\sqrt{13}}{6}\left(nhận\right)\end{matrix}\right.\)

TH2: x<-1

Pt sẽ là:

\(\dfrac{-1}{x+1}+\dfrac{1}{x+2}=3\)

=>\(\dfrac{-x-2+x+1}{\left(x+1\right)\left(x+2\right)}=3\)

=>\(\dfrac{-1}{\left(x+1\right)\left(x+2\right)}=3\)

=>-1=3(x+1)(x+2)

=>3(x^2+3x+2)=-1

=>3x^2+9x+6+1=0

=>3x^2+9x+7=0

Δ=9^2-4*3*7

=81-84=-3<0

=>Phương trình vô nghiệm

Vậy: \(S_3=\left\{\dfrac{-7+\sqrt{13}}{6}\right\}\)

x^2+x=0

=>x(x+1)=0

=>x=0 hoặc x=-1

=>S4={0;-1}

=>S4<>S3

=>Hai phương trình này không tương đương

19 tháng 3 2022

chọn A