Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{\left[\left(25-1\right):1+1\right]\left(25+1\right)}{2}=325.\)
\(B=\frac{\left[\left(51-3\right):2+1\right]\left(51+3\right)}{2}=675\)
\(C=\frac{\left[\left(81-1\right):4+1\right]\left(81+1\right)}{2}=861\)
Chào bạn!
Ta sẽ chứng minh bài toán này theo phương pháp phản chứng
Giả sử \(\left(a;c\right)=m\)\(V\text{ới}\)\(m\in N\)\(m\ne1\)
Khi đó \(\hept{\begin{cases}a=k_1m\\c=k_2m\end{cases}}\)
Thay vào \(ab+cd=p\)ta có : \(k_1mb+k_2md=p\Leftrightarrow m\left(k_1b+k_2d\right)=p\)
Khi đó p là hợp số ( Mâu thuẫn với đề bài)
Vậy \(\left(a;c\right)=1\)(đpcm)
gọi d là ước chung của n và n + 4 .
suy ra n +4 - n = 4 cũng chia hết cho d
theo bài ra d lại là số lẻ vậy d chỉ có thể bằng 1
Ước chung của 2 số là 1 suy ra 2 số là 2 số nguyên tố cùng nhau