Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn B
Lời giải.
Giả sử hộp thứ nhất có x viên bi, trong đó có a viên bi đen;
hộp thứ hai có y viên bi, trong đó có b viên bi đen
Điều kiện: x , y , a , b là các số nguyên dương và
Theo giả thiết, ta có
Từ ( 2 ) ⇔ 55 x y = 84 a b
suy ra xy chia hết cho 84
Mặt khác, ta có
nên xy = 84 (3)
Từ (1) và (3), ta được x = 14 y = 6
Từ (3) và (2), suy ra ab = 55 nên a là ước của 55
Lại có 55 6 ≤ 55 b = a ≤ 14 nên a = 11
Với a= 11, ta được b = 5
Vậy xác suất để được 2 bi trắng là
Chọn D
Giả sử hộp 1 có viên bi, trong đó có a viên bi đen.
Hộp 2 có y viên bi, trong đó có b viên bi đen.
x, y, a, b là những số nguyên dương, )
Từ giả thiết x + y = 20,
Từ đó ta có xy chia hết cho 84
Mặt khác suy ra xy = 84 ta được x = 14, y = 6
Thay vào (1) ta được ab = 55 nên a là ước của 55. Do a ≤ 14 nên a = 11 suy ra b = 5.
Vậy xác suất để lấy được 2 bi trắng
\(n\left(\Omega\right)=C^2_{13}\cdot C^2_{13}\)
\(n\left(A\right)=C^2_7\cdot C^2_{13}+C^2_6\cdot C^2_{13}+C^2_5\cdot C^2_{13}+C^2_8\cdot C^2_{13}\)
=>P(A)=5772/6084=37/39
Không gian mẫu: \(C_{20}^5\)
a. Số biến cố thuận lợi: \(C_{12}^3.C_8^2\)
Xác suất: \(P=\dfrac{C_{12}^3.C_8^2}{C_{20}^5}=...\)
b. Các trường hợp thỏa mãn: (0 trắng, 5 đen), (1 trắng, 4 đen), (2 trắng, 3 đen)
\(\Rightarrow C_8^5+C_{12}^1.C_8^4+C_{12}^2.C_8^3\)
Xác suất: \(P=\dfrac{C_8^5+C_{12}^1.C_8^4+C_{12}^2.C_8^3}{C_{20}^5}=...\)
Gọi A là biến cố: “trong số 7 viên bi được lấy ra có ít nhất 1 viên bi màu đỏ.”
Trong hộp có tất cả: 5+ 15 + 35 = 55 viên bi
- Số phần tử của không gian mẫu: Ω = C 55 7 .
- A ¯ là biến cố: “trong số 7 viên bi được lấy ra không có viên bi màu đỏ nào.”
=> n A ¯ = C 20 7 .
Vì A và A ¯ là hai biến cố đối nên: n A = Ω − n A ¯ = C 55 7 − C 20 7 .
Xác suất để trong số 7 viên bi được lấy ra có ít nhất 1 viên bi màu đỏ là P A = C 55 7 − C 20 7 C 55 7 .
Chọn đáp án B.
Chọn A
Lời giải
Không gian mẫu là số sách chọn ngẫu nhiên mỗi hộp 1 viên bi
Số phần tử của không gian mẫu là Ω = C 15 1 . C 18 1
Gọi X là biến cố "2 viên bi lấy ra từ mỗi hộp có cùng màu"
Ta có các kết quả thuận lợi cho biến cố X như sau
● Hộp A lấy ra 1 bi trắng và hộp B lấy ra 1 bi trắng, có C 4 1 . C 7 1 cách
● Hộp A lấy ra 1 bi đỏ và hộp B lấy ra 1 bi đỏ, có C 5 1 . C 6 1 cách
● Hộp A lấy ra 1 bi xanh và hộp B lấy ra 1 bi xanh, có C 6 1 . C 5 1 cách
Suy ra số phần tử của biến cố
Vậy xác suất cần tính
P ( X ) = Ω x Ω = 44 135
Hộp 1 có 9 viên, hộp 2 có 9 viên, lấy ở mỗi hộp 1 viên.
\(\Rightarrow n(Ω)=(C_{9}^{1})^2=81\)
A: "Hai viên bi chọn được cùng màu".
TH1: cùng màu vàng: \(C_{6}^{1} .C_{5}^{1} =30\)
TH2: cùng màu đỏ: \(C_{3}^{1} .C_{4}^{1}=12\)
\(\Rightarrow n(A)=30+12=42\)
\(\Rightarrow P(A) =\dfrac{n(A)}{n(Ω)}=\dfrac{42}{81}=\dfrac{14}{27}\).
Hộp 1 có 9 viên, hộp 2 có 9 viên, lấy ở mỗi hộp 1 viên.
\(\Rightarrow n(Ω)=(C_{9}^{1})^2=81\)
A: "Hai viên bi chọn được cùng màu".
TH1: cùng màu vàng: \(C_{6}^{1} .C_{5}^{1} =30\)
TH2: cùng màu đỏ: \(C_{3}^{1} .C_{4}^{1}=12\)
\(\Rightarrow n(A)=30+12=42\)
\(\Rightarrow P(A) =\dfrac{n(A)}{n(Ω)}=\dfrac{42}{81}=\dfrac{14}{27}\).