Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo Cô si 4x+\frac{1}{4x}\ge24x+4x1≥2 , đẳng thức xảy ra khi và chỉ khi 4x=\frac{1}{4x}=1\Leftrightarrow x=\frac{1}{4}4x=4x1=1⇔x=41). Do đó
A\ge2-\frac{4\sqrt{x}+3}{x+1}+2016A≥2−x+14x+3+2016
A\ge4-\frac{4\sqrt{x}+3}{x+1}+2014A≥4−x+14x+3+2014
A\ge\frac{4x-4\sqrt{x}+1}{x+1}+2014=\frac{\left(2\sqrt{x}-1\right)^2}{x+1}+2014\ge2014A≥x+14x−4x+1+2014=x+1(2x−1)2+2014≥2014
Hơn nữa A=2014A=2014 khi và chỉ khi \left\{{}\begin{matrix}x=\dfrac{1}{4}\\2\sqrt{x}-1=0\end{matrix}\right.{x=412x−1=0 \Leftrightarrow x=\dfrac{1}{4}⇔x=41 .
Vậy GTNN = 2014
a: Khi m=1 thì (d): y=2x-1+2=2x+1
Khi m=1 thì (d'): y=-x-2
Phương trình hoành độ giao điểm là:
2x+1=-x-2
=>3x=-3
hay x=-1
=>y=-2+1=-1
b: Phương trình hoành độ giao điểm là:
\(2x-1+2m=-x-2m\)
=>3x-1+4m=0
=>3x=1-4m
=>x=(1-4m)/3
Để x dương thì 1-4m>0
hay m<1/4
Câu 2:
Thay x=0 và y=-3 vào (d), ta được:
m+2=-3
hay m=-5
a: Để hàm số đồng biến thì 2m-6>0
hay m>3
b: Phương trình hoành độ giao điểm là:
\(x^2-\left(2m-6\right)x-m+9=0\)
\(\text{Δ}=\left(2m-6\right)^2-4\left(-m+9\right)\)
\(=4m^2-24m+36+4m-36\)
=4m2-20m
Để (P) tiếp xúc với (d) thì 4m(m-5)=0
=>m=0 hoặc m=5
a) Đths y = ax - 4 cắt y = 2x - 1 tại điểm có hoành độ = 2
=> Thay x = 2 vào y = 2x - 1
=> y = 1
=> (1; 1) ∈ y = ax - 4
=> Thay x = 1; y = 1 vào hàm số y = ax - 4
=> a - 4 = 1 => a = 5
b) y = (2m - 3)x + (2m - 1) cắt trục tung tại điểm có tung độ = 46
=> y = (2m - 3)x + (2m - 1) cắt (0 ; 46)
=> Thay x = 0; y = 46 vào hàm số y = (2m - 3)x + (2m - 1)
=> 2m - 1 = 46
=> m = 47/2
a, Thay x = -2 => y = -2 + 4 = 2 => A(-2;2)
(d) cắt y = x + 4 tại A(-2;2) <=> 2 = -2 ( m + 1 ) - 2
<=> -2m - 2 - 2 = 2 <=> -2m = 6 <=> m = -3
Vậy (d) : y = -2x - 2
b, bạn tự vẽ nhé
c, Cho x = 0 => y = -2
=> (d) cắt trục Oy tại A(0;-2) => OA = | -2 | = 2
Cho y = 0 => x = -1
=> (d) cắt trục Ox tại B(-1;0) => OB = | -1 | = 1
Ta có : \(S_{OAB}=\frac{1}{2}.OA.OB=\frac{1}{2}.2.1=1\)( dvdt )
Đặt: (d): y = (m+5)x + 2m - 10
Để y là hàm số bậc nhất thì: m + 5 # 0 <=> m # -5
Để y là hàm số đồng biến thì: m + 5 > 0 <=> m > -5
(d) đi qua A(2,3) nên ta có:
3 = (m+5).2 + 2m - 10
<=> 2m + 10 + 2m - 10 = 3
<=> 4m = 3
<=> m = 3/4
(d) cắt trục tung tại điểm có tung độ bằng 9 nên ta có:
9 = (m+5).0 + 2m - 10
<=> 2m - 10 = 9
<=> 2m = 19
<=> m = 19/2
(d) đi qua điểm 10 trên trục hoành nên ta có:
0 = (m+5).10 + 2m - 10
<=> 10m + 50 + 2m - 10 = 0
<=> 12m = -40
<=> m = -10/3
(d) // y = 2x - 1 nên ta có:
\hept{m+5=22m−10≠−1\hept{m+5=22m−10≠−1 <=> \hept{m=−3m≠92\hept{m=−3m≠92 <=> m=−3
Giả sử (d) luôn đi qua điểm cố định M(x0; y0)
Ta có: y0=(m+5)x0+2m−10y0=(m+5)x0+2m−10
<=> mx0+5x0+2m−10−y0=0mx0+5x0+2m−10−y0=0
<=> m(xo+2)+5x0−y0−10=0m(xo+2)+5x0−y0−10=0
Để M cố định thì: \hept{x0+2=05x0−y0−10=0\hept{x0+2=05x0−y0−10=0 <=> \hept{x0=−2y0=−20\hept{x0=−2y0=−20
Vậy...
Lời giải:
PT hoành độ giao điểm:
$x^2-(m-1)x-m-1=0(*)$
Để $(P)$ và $(dm)$ cắt nhau tại 1 điểm có tọa độ nguyên thì PT $(*)$ phải có nghiệm nguyên
Điều này xảy ra khi $\Delta=(m-1)^2+4(m+1)=a^2$ với $a$ là số tự nhiên
$\Leftrightarrow m^2+2m+5=a^2$
$\Leftrightarrow (m+1)^2+4=a^2$
$\Leftrightarrow 4=(a-m-1)(a+m+1)$
Vì $a+m+1>0$ và $a+m+1> a-m-1$ với mọi $a$ tự nhiên, $m$ nguyên dương nên:
$a+m+1=4; a-m-1=1$
$\Rightarrow m=\frac{1}{2}$ (vô lý)
Vậy không tồn tại $m$ thỏa mãn điều kiện đề bài.