Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình hoành độ giao điểm của (C) và (P) là
x 3 + a x 2 + b x + c = m x 2 + n x + p
⇔ x 3 + a - m x 2 + b - n x + c - p = 0 *
Dựa vào đồ thị ta thấy hai đồ thị hàm số tiếp xúc nhau tại điểm có hoành độ x=-1 và cắt nhau tại điểm có hoành độ x=1 nên phương trình (*) có nghiệm x=-1 (bội 2) và x=1 (nghiệm đơn).
Viết lại (*) ta được x + 1 2 x - 1 = 0
Vậy
Chọn đáp án B.
Đáp án D
Dựa vào đồ thị hàm số y = f ' ( x ) ⇒ f ' x = 3 x 2 - 1
Khi đó f x = ∫ f ' x d x = x 3 - 3 x + C .
Điều kiện đồ thị hàm số f(x) tiếp xúc với đường thẳng y = 4 là:
f x = 4 f x = 0 ⇒ x 3 - 3 x + C = 4 3 x 2 - 1 = 0 ⇔ x = - 1 C = 2 (Do x < 0 suy ra f x = x 3 - 3 x + 2 C
Cho C ∩ O x ⇒ hoành độ các giao điểm là x = -2,x = 1
Khi đó S = ∫ - 2 1 x 3 - 3 x + 2 d x = 27 4 .
Đáp án D
y ' = 4 a x 3 + 2 b x , y ' 1 = - 4 a - 2 b
Phương trình tiếp tuyến tại A là: d: y=(-4a-2b)(x+1)
Xét phương trình tương giao: a x 4 + b x 2 + c = ( - 4 a - 2 b ) ( x + 1 )
Phương trình có 2 nghiệm x=0,x=2 => 4 a + 2 b + c = 0 28 a + 10 b + c = 0 ( 1 )
∫ 0 2 - 4 a - 2 b x + 1 - a x 4 - b x 2 - c d x = - 2 a - b x 2 + - 4 a - 2 b x - a x 5 5 - b x 3 3 - c x 2 0 = - 112 5 a - 32 3 b - 2 c = 28 5 2 1 , 2 ⇒ a = 1 b = - 3 ⇒ y = x 4 - 3 x 2 + 2 , d : y = 2 x + 2 c = 2 ⇒ S = ∫ - 1 0 x 4 - 3 x 2 + 2 d x = x 5 5 - x 3 - x 2 0 - 1 = 1 5
Đáp án D
∫ 0 2 [ ( − 4 a − 2 b ) ( x + 1 ) − ax 4 − b x 2 − c ] d x = [ ( − 2 a − b ) x 2 + ( − 4 a − 2 b ) x − ax 5 5 − b x 3 3 − c x ] 2 0 = − 112 5 a − 32 3 b − 2 c = 28 5 ( 2 ) ( 1 ) , ( 2 ) ⇒ a = 1 b = − 3 c = 2 ⇒ y = x 4 − 3 x 2 + 2 , d : y = 2 x + 2 ⇒ S = ∫ − 1 0 ( x 4 − 3 x 2 + 2 ) d x = x 5 5 − x 3 − x 2 0 − 1 = 1 5
Đáp án D.
Ta có y ' = 4 a x 3 + 2 b x → y ' − 1 = − 4 a − 2 b . Phương trình tiếp tuyến của (C) tại điểm A − 1 ; 0 là đường thẳng
d : y = y ' − 1 . x + 1 ⇔ y = − 4 a − 2 b x − 4 a − 2 b
Phương trình hoành độ giao điểm của đường thẳng d và đồ thị (C) là:
a x 4 + b x 2 + c = − 4 a + 2 b x − 4 a − 2 b ⇔ a x 4 + b x 2 + 4 a + 2 b x + 4 a + 2 b + c = 0 (*)
Quan sát đồ thị, ta thấy đường thẳng d cắt đồ thị tại hai điểm có hoành độ x = 0, x = 2 nên phương trình (*) có hai nghiệm x = 0, x = 2 .
Suy ra
4 a + 2 b + c = 0 16 a + 4 b + 2 4 a + 2 b + 4 a + 2 b + c = 0 ⇔ 4 a + 2 b + c = 0 28 a + 10 b + c = 0 (1)
Diện tích hình phẳng giới hạn bởi đường thẳng d, đồ thị (C) và hai đường thẳng x = 0, x = 2 là
S = ∫ 0 2 − 4 a − 2 b x − 4 a − 2 b − a x 4 + b x 2 + c d x = 28 5
⇔ ∫ 0 2 − 4 a − 2 b x − 4 a − 2 b − a x 4 − b x 2 − c d x = 28 5
⇔ − a 5 x 5 − b 3 x 3 − 2 a + b x 2 − 4 a + 2 b + c x 0 2 = 28 5
⇔ − 32 5 a − 8 b 3 − 4 2 a + b − 2 4 a + 2 b + c = − 28 5 ⇔ 112 5 a + 32 3 b + 2 c = 28 5 ( 2 )
Giải hệ phương trình gồm (1) và (2) ta tìm được: a = − 1, b = 3, c = − 2 .
Suy ra C : y = − x 4 + 3 x 2 − 2 và d : y = − 2 x − 2 . Diện tích hình phẳng cần tính là:
S = ∫ − 1 0 − x 4 + 3 x 2 − 2 − − 2 x − 2 d x = ∫ − 1 0 − x 4 + 3 x 2 + 2 x d x = ∫ − 1 0 x 4 − 3 x 2 − 2 x d x
= x 5 5 − x 3 − x 2 − 1 0 = 1 5 (đvdt).
Đáp án B