Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hàm số y = 2x + 3k có các hệ số a = 2, b = 3k.
Hàm số y = (2m + 1)x + 2k – 3 có các hệ số a' = 2m + 1, b' = 2k – 3.
Hai hàm số đã cho là hàm số bậc nhất nên 2m + 1 ≠ 0
a) Hai đường thẳng cắt nhau khi a ≠ a' tức là:
2 ≠ 2m + 1 ⇔ 2m ≠ 1
b) Hai đường thẳng song song với nhau khi a = a' và b ≠ b' tức là:
2 = 2m + 1 và 3k ≠ 2k – 3
c) Hai đường thẳng trùng nhau khi a = a' và b = b' tức là:
2 = 2m + 1 và 3k = 2k – 3
a) Điều kiện của m để hàm số luôn nghịch biến:
<=> m<1
b) Hàm số y=(m-1)x+m+3 song song với đồ thị hàm số y=-2x+1
<=> m-1=-2
<=> m=-1
Vậy m =-1 thi hàm số y=(m-1)x+m+3 song song với đồ thị hàm số y=-2x+1
c) Thay m=-1 vào đồ thị hàm số y=(m-1)x+m+3
Ta được:y=(-1-2)x-1+3=-2x+2
Đồ thị hàm số y=-2x+2 là đường thẳng đi qua hai điểm (0;2)và (1;0)
Hàm số y = 2x + 3k có các hệ số a = 2, b = 3k.
Hàm số y = (2m + 1)x + 2k – 3 có các hệ số a' = 2m + 1, b' = 2k – 3.
Hai hàm số đã cho là hàm số bậc nhất nên 2m + 1 ≠ 0
Hai đường thẳng song song với nhau khi a = a' và b ≠ b' tức là:
2 = 2m + 1 và 3k ≠ 2k – 3
a> gọi y=(m-2)x+n là (d)
để (d) là hsbn thì m khác 2, với mọi n thuộc R
b> hàm số đồng biến khi m>2
nghịch biến khi m<2
c> điều kiện để (d) // (d'): y=2x-1 <=> m-2=2 <=>m=4
và n khác -1
vậy để (d) // (d') <=> m=4, m khác 2, n khác -1
d> điều kiện để (d) cắt (d''): y=-3x+2 <=> m-2=-3 <=> m khác -1
vậy để (d) cắt (d'') <=> m khác 2, m khác -1
e> để (d) trùng (d'''): y=3x-2 <=> m-2=3 <=> m=5
và n = -2
vậy để d//d''' <=> m khác 2, m=5, n=-2
f> vì d đi qua A(1;2) => 2=m-2+n <=> m+n=4 (1). vì d đi qua B(3;4) => 4=3m-6+n <=> 3m+n = 10 (2)
lấy (2) trừ (1) <=> 2m=6 <=> m= 3 => n=1
a: Để hàm số y=(1-m)x+m-2 là hàm số bậc nhất thì \(1-m\ne0\)
=>\(m\ne1\)
c: Để đồ thị hàm số y=(1-m)x+m-2 song song với đường thẳng y=2x-3 thì
\(\left\{{}\begin{matrix}1-m=2\\m-2\ne-3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m=-1\\m\ne-1\end{matrix}\right.\)
=>\(m\in\varnothing\)
d: Để đồ thị hàm số y=(1-m)x+m-2 cắt đường thẳng y=-x+1 thì \(1-m\ne-1\)
=>\(m\ne2\)
e: Thay x=2 và y=1 vào y=(1-m)x+m-2, ta được:
2(1-m)+m-2=1
=>2-2m+m-2=1
=>-m=1
=>m=-1
g: Để đồ thị hàm số y=(1-m)x+m-2 tạo với trục Ox một góc nhọn thì 1-m>0
=>m<1
Để đồ thị hàm số y=(1-m)x+m-2 tạo với trục Oy một góc tù thì 1-m<0
=>m>1
h: Thay x=0 và y=3 vào y=(1-m)x+m-2, ta được:
0(1-m)+m-2=3
=>m-2=3
=>m=5
f: Thay x=-2 và y=0 vào y=(1-m)x+m-2, ta được:
-2(1-m)+m-2=0
=>-2+2m+m-2=0
=>3m-4=0
=>3m=4
=>\(m=\dfrac{4}{3}\)
Hàm số y = mx + 3 có các hệ số a = m, b = 3.
Hàm số y = (2m + 1)x – 5 có các hệ số a' = 2m + 1, b' = -5
a) Vì hai hàm số là hai hàm số bậc nhất nên a và a' phải khác 0, tức là:
m ≠ 0 và 2m + 1 ≠ 0 hay
Theo đề bài ta có b ≠ b' (vì 3 ≠ -5)
Vậy đồ thị của hai hàm số là hai đường thẳng song song với nhau khi và chỉ khi a ≠ a' tức là:
m = 2m + 1 => m = - 1
Kết hợp với điều kiện trên ta thấy m = -1 là giá trị cần tìm.
b) Đồ thị của hai hàm số y = mx + 3 và y = (2m + 1)x – 5 là hai đường thẳng cắt nhau khi và chỉ khi:
m ≠ 2m + 1 => m ≠ -1.
Kết hợp với điều kiện trên, ta có:
b: Để hai hàm só song song thì m=5
Chi tiết ra hơn được hong ạ
Mình cần gấp