Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
MB,MA là các tiếp tuyến
Do đó: MB=MA
Xét (O') có
MA,MC là các tiếp tuyến
Do đó: MA=MC
Ta có: MB=MA
MA=MC
Do đó:MB=MC
=>M là trung điểm của BC
Xét ΔABC có
AM là đường trung tuyến
\(AM=\dfrac{BC}{2}\left(=BM\right)\)
Do đó: ΔABC vuông tại A
b: ta có: MB=MA
=>M nằm trên đường trung trực của AB(1)
Ta có: OB=OA
=>O nằm trên đường trung trực của AB(2)
Từ (1) và (2) suy ra MO là đường trung trực của AB
=>MO\(\perp\)AB tại E
ta có: MA=MC
=>M nằm trên đường trung trực của AC(3)
ta có: O'A=O'C
=>O' nằm trên đường trung trực của AC(4)
từ (3) và (4) suy ra MO' là trung trực của AC
=>MO'\(\perp\)AC tại F
Xét tứ giác AEMF có
\(\widehat{AEM}=\widehat{AFM}=\widehat{FAE}=90^0\)
=>AEMF là hình chữ nhật
a, Ta có AB = AE + BE = EM + EN
Và CD = FD + FC = NF + NE
=> AB + CD = 2EF => AB = EF
b, Ta có EM = AB – EB = EF – EN = NF
Đường tròn có đường kính BC có tâm M, bán kính MA.OO' vuông góc với MA tại A nên là tiếp tuyến của đường tròn (M).
Gọi I là trung điểm của OO', I là tâm của đường tròn có đường kính OO', IM là bán kính (vì MI là trung tuyến ứng với cạnh huyền của MOO'. IM là đường trung bình của hình thang OBCO' nên IM // OB // O'C. Do đó IM ⊥ BC.
BC vuông góc với IM tại M nên BC là tiếp tuyến của đường tròn (I).
Chịu thui bạn lên mạng tra nha1
Hok tốt nhe1!!!!!