K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2018

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Ta có:

BM = MA

CM = MA

( tính chất hai tiếp tuyến cắt nhau)

⇒ BC = BM + MC = 2MA

Xét tam giác OMO’ vuông tại M có MA là đường cao.

Áp dụng hệ thức lượng trong tam giác vuông OMO’ có:

A M 2  = OM.O'M = 16.9 = 144 ⇒ AM = 12cm

⇒ BC = 2.12 = 24cm

23 tháng 11 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

9 tháng 5 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Ta có:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Mà OB ⊥ BC ⇒ IM ⊥ BC

Ta có:

IM ⊥ BC

BC ⋂ (I; IM) = {M}

Suy ra, BC là tiếp tuyến của đường tròn tâm I, bán kính IM

16 tháng 10 2017

c) Xét tam giác OIO' vuông tại I, IA là đường cao có:

IA 2  = O'A.OA = 4.9 = 36 ⇒ IA = 6 cm

Lại có: BC = 2 AI ⇒ BC = 12 (cm)

6 tháng 2 2017

ΔOIO' vuông tại A có IA là đường cao nên theo hệ thức giữa cạnh và đường cao ta có:

    IA2 = AO.AO' = 9.4 = 36

=> IA = 6 (cm)

Vậy BC = 2.IA = 2.6 = 12 (cm)

7 tháng 10 2021

giúp mình vs

 

1 tháng 10 2019

Để học tốt Toán 9 | Giải bài tập Toán 9

a) Theo tính chất hai tiếp tuyến cắt nhau ta được IA = IB, IA = IC.

Để học tốt Toán 9 | Giải bài tập Toán 9

b) Theo tính chất hai tiếp tuyến cắt nhau ta có IO, IO' là các tia phân giác của hai góc kề bù AIB, AIC nên:

Để học tốt Toán 9 | Giải bài tập Toán 9

c) ΔOIO' vuông tại A có IA là đường cao nên theo hệ thức giữa cạnh và đường cao ta có:

    IA2 = AO.AO' = 9.4 = 36

=> IA = 6 (cm)

Vậy BC = 2.IA = 2.6 = 12 (cm)

NV
7 tháng 1

a.

Do IA và IB là tiếp tuyến của (O), theo t/c hai tiếp tuyến cắt nhau ta có: \(IA=IB\)

Tương tự, IA và IC là tiếp tuyến của (O') \(\Rightarrow IA=IC\)

\(\Rightarrow IA=IB=IC=\dfrac{1}{2}BC\)

\(\Rightarrow\Delta ABC\) vuông tại A

\(\Rightarrow\widehat{BAC}=90^0\)

b.

Theo t/c hai tiếp tuyến cắt nhau ta có:

\(\left\{{}\begin{matrix}\widehat{OIB}=\widehat{OIA}=\dfrac{1}{2}\widehat{BIA}\\\widehat{O'IC}=\widehat{O'IA}=\dfrac{1}{2}\widehat{CIA}\end{matrix}\right.\)

\(\Rightarrow\widehat{OIA}+\widehat{O'IA}=\dfrac{1}{2}\left(\widehat{BIA}+\widehat{CIA}\right)\)

\(\Rightarrow\widehat{OIO'}=\dfrac{1}{2}.\widehat{BIC}=\dfrac{1}{2}.180^0=90^0\)

\(\Rightarrow\Delta OIO'\) vuông tại O

Do IA là tiếp tuyến chung tại điểm tiếp xúc ngoài của 2 đường tròn \(\Rightarrow IA\perp O'O\)

Áp dụng hệ thức lượng trong tam giác vuông OIO' với đường cao IA:

\(IA^2=OA.O'A=36\Rightarrow IA=6\left(cm\right)\)

\(\Rightarrow BC=2IA=12\left(cm\right)\)

NV
7 tháng 1

loading...

15 tháng 7 2020

1 2 1 2 3 4 B I C O A O'

a) Theo tính chất hai tiếp tuyến cắt nhau ta được IA = IB, IA = IC .

Tam giác ABC có đường trung tuyến \(AI=\frac{1}{2}BC\)nên là tam giác vuông

Vậy \(\widehat{BAC}=90^o\left(đpcm\right)\)

b) Theo tính chất hai tiếp tuyến cắt nhau ta có IO, IO' là các tia phân giác của hai góc kề bù AIB, AIC nên :

\(\widehat{OIO'}=\widehat{OIA}+\widehat{O'IA}=\frac{1}{2}\widehat{AIB}+\frac{1}{2}\widehat{AIC}=\frac{1}{2}\left(\widehat{AIB}+\widehat{AIC}\right)\)

Vậy : \(\widehat{OIO'}=90^o\)

c) \(\Delta OIO'\) vuông tại A có IA là đường cao nên theo hệ thức giữa cạnh và đường cao ta có:

    IA2 = AO.AO' = 9 . 4 = 36

=> IA = 6 ( cm )

Vậy BC = 2 . IA = 2 . 6 = 12 (cm)