Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Trường hợp 1: O và O' nằm khác phía đối với AB
Gọi I là giao điểm của OO' và AB. Theo tính chất đường nối tâm ta có
\(AB\perp OO'\) ; AI = IB = 12
Áp dụng định lí Pitago , ta được :
\(OI=\sqrt{OA^2-AI^2}=\sqrt{20^2-12^2}=\sqrt{256}=16\left(cm\right)\)
\(IO'=\sqrt{O'A^2-AI^2}=\sqrt{15^2-12^2}=\sqrt{81}=9\left(cm\right)\)
Vậy OO' = OI + IO' = 16 + 9 = 25 ( cm )
- Trường hợp 2: O và O' nằm cùng phía đối với AB
Như TH1 , ta lại có :
\(OI=\sqrt{OA^2-AI^2}=16\left(cm\right)\)
\(O'I=\sqrt{O'A^2-AI^2}=9\left(cm\right)\)
Vậy OO' = OI – O'I = 16 – 9 = 7 ( cm )
a) Trường hợp O và O’ nằm khác phía đối với AB
Ta có: AI =1/2 AB = 12
OI2 = OA2 – AI2
=400-144 =256
⇒ OI =16
O’I2 = O’A2 – AI2 =255 -144 =81
⇒ O’I = 9
Ta có: OO’ = OI + OI’ = 16 + 9 =25 (cm).
b) Trường hợp O và O’ nằm cùng phía đối với AB.
Ta có: OI2 = OA2 – AI2 = 256
⇒ OI =16
Tương tự O’I= 9
Do đó: OO’= OI – O’I =16 – 9= 7(cm)
A B O C I P M K Q
a) Đường tròn (O) có đường kính AB và điểm C nằm trên cung AB => ^ACB=900 hay ^PCB=900
Xét tứ giác BCPI: ^PCB=900; ^PIB=900 => Tứ giác BCPI nội tiếp đường tròn (Tâm là trung điểm BP)
b) Xét \(\Delta\)AMB: AC\(\perp\)BM; MI\(\perp\)AB; AC cắt MI tại P => P là trực tâm của \(\Delta\)AMB
Dễ thấy: BK\(\perp\)AM => B;P;K là 3 điểm thẳng hàng (đpcm).
c) Nhận xét: Khi BC=R thì BC=OC=OB=OA => \(\Delta\)ABC là tam giác nửa đều có ^CBA=600
=> ^ACO=300. Do AQ là tiếp tuyến của (O) nên ^ACO+^QCA=900 => ^QCA = 600 (1)
Theo t/c 2 tiếp tuyến cắt nhau => QA=QC (2)
Từ (1) và (2) => \(\Delta\)AQC là tam giác đều => AQ=AC
Dễ có: AC=\(\sqrt{3}R\)=> AQ=\(\sqrt{3}R\)
Xét \(\Delta\)MIB: ^MBI=600; ^MIB=900 => \(\Delta\)MIB là tam giác nửa đều => BI= BM/2
Để ý thấy I là trung điểm OA => BI=3/2R => BM = 2.3/2R = 3R
Dựa vào ĐL Pytagore, ta tính được: \(MI^2=9R^2-\frac{9}{4}R^2=R^2.\left(\frac{36-9}{4}\right)=\frac{R^2.27}{4}\)
\(\Rightarrow MI=\frac{\sqrt{27}.R}{2}\)
\(\Rightarrow S_{QAIM}=\frac{\left(\sqrt{3}R+\frac{\sqrt{27}R}{2}\right).\frac{R}{2}}{2}=\frac{R.\left(\sqrt{3}+\frac{3\sqrt{3}}{2}\right).\frac{R}{2}}{2}\)\(=\frac{R^2.\frac{5\sqrt{3}}{4}}{2}=\frac{5\sqrt{3}.R^2}{8}\)
Vậy \(S_{QAIM}=\frac{5\sqrt{3}.R^2}{8}\).
- Trường hợp 1: O và O' nằm khác phía đối với AB
Gọi I là giao điểm của OO' và AB. Theo tính chất đường nối tâm ta có:
AB ⊥ OO' và AI = IB = 12
Áp dụng định lí Pitago, ta được:
Vậy OO' = OI + IO' = 16 + 9 = 25 (cm)
- Trường hợp 2: O và O' nằm cùng phía đối với AB
Tương tự như trường hợp 1, ta có:
Vậy OO' = OI – O'I = 16 – 9 = 7 (cm).
- Trường hợp 1: O và O' nằm khác phía đối với AB
Gọi I là giao điểm của OO' và AB. Theo tính chất đường nối tâm ta có:
AB ⊥ OO' và AI = IB = 12
Áp dụng định lí Pitago, ta được:
Vậy OO' = OI + IO' = 16 + 9 = 25 (cm)
- Trường hợp 2: O và O' nằm cùng phía đối với AB
Tương tự như trường hợp 1, ta có:
Vậy OO' = OI – O'I = 16 – 9 = 7 (cm).
Đáp án D
Gọi giao điểm của AB và OI là điểm H .
Theo tính chất đường nối tâm ta có H là trung điểm của AB nên HA = HB = 24 : 2 = 12 cm
Áp dụng định lí Pytago vào tam giác vuông OAH ta có:
O H 2 = O A 2 – A H 2 = 15 2 – 12 2 = 81 nên OH = 9 cm
Áp dụng đinh lí Pytago vào tam giác vuông AHI ta có:
H I 2 = A I 2 – A H 2 = 20 2 – 12 2 = 256 n ê n H I = 16 c m
Do đó, OI = OH + HI = 9 + 16 = 25 cm