Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các cung nhỏ có số đo bằng nhau là:
Trong đường tròn lớn:
Trong đường tròn nhỏ:
b) Các cung nhỏ có số đo bằng nhau là:
Trong đường tròn lớn:
Trong đường tròn nhỏ:
c) Hai cung lớn có số đo bằng nhau.
* Chú ý : Phân biệt : so sánh hai cung và số đo hai cung.
So sánh hai cung trong trường hợp hai cung trong một đường tròn hoặc trong hai đường tròn có bán kính bằng nhau.
Còn so sánh số đo hai cung : ta luôn so sánh được.
Kiến thức áp dụng
+ Góc có đỉnh trùng với tâm đường tròn được gọi là góc ở tâm.
+ Số đo của cung nhỏ bằng số đo của góc ở tâm chắn cung đó.
Hai cung lớn có số đo bằng nhau.
* Chú ý : Phân biệt : so sánh hai cung và số đo hai cung.
So sánh hai cung trong trường hợp hai cung trong một đường tròn hoặc trong hai đường tròn có bán kính bằng nhau.
Còn so sánh số đo hai cung : ta luôn so sánh được.
a) các cung nhỏ AM, CP, BN, DQ có cùng số đo
b) cung AM = DQ; cung BN = PC; cung AQ = MD; cung BP = NC.
c) các cung lớn bằng nhau: AQDM = DMAQ; BPCN = PBNC; AMDQ = MAQD; BNCP = NBPC; AQD = AMD = MAQ = MDQ BPC = BNC = NBP = NCP
Vẽ OM⊥AB⇒OM⊥CD.
Xét đường tròn (O;OC) (đường tròn nhỏ) có OM là một phần đường kính, CD là dây và OM⊥CD nên M là trung điểm của CD hay MC=MD (định lý)
Xét đường tròn (O;OA) (đường tròn lớn) có OM là một phần đường kính, AB là dây và OM⊥AB nên M là trung điểm của AB hay MA=MB (định lý)
Ta có MA=MB và MC=MD (cmt) nên trừ các đoạn thẳng theo vế với vế ta được MA−MC=MB−MD ⇒AC=BD.
Nhận xét. Kết luận bài toán vẫn được giữ nguyên nếu C và D đổi chỗ cho nhau.
á em lộn
a) Cho hai đường tròn (O; R)(O; R) và (O′; r)(O′; r) với R>r. Nếu OO′=R−rOO′=R−r thì hai đường tròn tiếp xúc trong.
b) +) Nếu tam giác có ba đỉnh nằm trên đường tròn và có 1 cạnh là đường kính của đường tròn đó thì tam giác đó là tam giác vuông.
+) Trong một đường tròn, đường kính vuông góc với dây thì đi qua trung điểm của dây đó.
Các cung nhỏ có số đo bằng nhau là:
Trong đường tròn lớn:
Trong đường tròn nhỏ: