
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a, Nếu tia At không cắt yy'
=> At // yy'
=> At trung với Ax (vì xx' // yy')
Mà At là phân giác góc xAb
=> At nằm giữa Ax và AB
=> At không trùng Ax
=> At cắt yy'
b,
Bạn xem lại đề. C ở đâu vậy?

a, Nếu tia At không cắt yy'
=> At // yy'
=> At trung với Ax (vì xx' // yy')
Mà At là phân giác góc xAb
=> At nằm giữa Ax và AB
=> At không trùng Ax
=> At cắt yy'
b,
Bạn xem lại đề. C ở đâu vậy?

a)Ta có:\(\widehat{xOy}\)+\(\widehat{xOy'}\)=180độ
40 độ +\(\widehat{xOy'}\)=180độ
\(\widehat{xOy'}\)=140 độ
Vì \(\widehat{xOy}=\widehat{x'Oy'}\)=>\(\widehat{x'Oy'}\)=40 độ
Vậy \(\widehat{x'Oy'}\)=40 độ;\(\widehat{xOy'}\)=140 độ
b)Ta có:\(\widehat{x'Ot}+\widehat{tAx}\)=180độ
140 độ+\(\widehat{tAx}\)=180 độ
\(\widehat{tAx}\)=40 độ
mà \(\widehat{xOy}\)=40 độ
=>\(\widehat{xOy}=\widehat{xAt}\)
mà hai góc này ở vị trí so le trong =>At//yy'

a: Các góc kề bù với góc xOy là \(\hat{xOy^{\prime}};\hat{x^{\prime}Oy}\)
Các cặp góc đối đỉnh là:
\(\hat{xOy^{\prime}};\hat{x^{\prime}Oy}\) ; \(\hat{xOy};\hat{x^{\prime}Oy^{\prime}}\)
b: Sửa đề: Tính số đo của \(\hat{x^{\prime}Ot}\)
Ta có: \(\hat{xOy^{\prime}}+\hat{xOy}=180^0\) (hai góc kề bù)
=>\(\hat{xOy^{\prime}}=180^0-80^0=100^0\)
Ot là phân giác của góc xOy'
=>\(\hat{xOt}=\frac{100^0}{2}=50^0\)
Ta có: \(\hat{xOt}+\hat{x^{\prime}Ot}=180^0\) (hai góc kề bù)
=>\(\hat{x^{\prime}Ot}=180^0-50^0=130^0\)