Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\) Các hình thang \(BDEC;BDIC;BIEC\)
\(b,DE//BC.nên.\widehat{B_1}=\widehat{I_1}\left(so.le.trong\right)\)
Mà \(\widehat{B_1}=\widehat{B_2}\left(t/c.phân.giác\right)\) nên \(\widehat{B_2}=\widehat{I_1}\Rightarrow\Delta DIB\) cân tại D
\(\Rightarrow DI=DB\left(1\right)\)
\(DE//BC.nên.\widehat{C_1}=\widehat{I_2}\left(so.le.trong\right)\)
Mà \(\widehat{C_1}=\widehat{C_2}\left(t/c.phân.giác\right)\) nên \(\widehat{C_2}=\widehat{I_2}\Rightarrow\Delta IEC\) cân tại E
\(\Rightarrow EI=EC\left(2\right)\\ \left(1\right)\left(2\right)\Rightarrow DI+IE=BD+EC\\ \Rightarrow DE=BD+CE\left(Đpcm\right)\)
Xét ΔANG và ΔCND có
\(\widehat{GAN}=\widehat{DCN}\)
NA=NC
\(\widehat{ANG}=\widehat{CND}\)
Do đó: ΔANG=ΔCND
Suy ra: NG=ND
Xét ΔBAC có
BN là đường trung tuyến ứng với cạnh huyền AC
AM là đường trung tuyến ứng với cạnh huyền BC
BN cắt AM tại G
Do đó: G là trọng tâm của ΔBAC
Suy ra: \(BG=\dfrac{2}{3}BN\)
\(\Leftrightarrow NG=ND=\dfrac{1}{3}BN\)
\(\Leftrightarrow BG=GD\)
hay B và D đối xứng nhau qua G
b: Xét ΔDBI có
\(\widehat{DBI}=\widehat{DIB}\)
nên ΔDBI cân tại D
Xét ΔEIC có \(\widehat{EIC}=\widehat{ECI}\)
nên ΔEIC cân tại E
Ta có: DE=DI+IE
nên DE=DB+EC
Vậy: BDEC là hình thang có một cạnh đáy bằng tổng hai cạnh bên