K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2020

M N H I O

Đề thiếu rồi bạn

19 tháng 2 2016

mk chỉ bt vẽ hình thôi bạn

28 tháng 2 2019

A B C H M N P I

Cm: a) Xét t/giác ABH và t/giác ACH

có AB = AC (gt)

 góc AHB = góc AHC = 900 (gt)

 AH : chung

=> t/giác ABH = t/giác ACH (ch - cgn)

=> góc BAH = góc HAC (hai góc tương ứng)         (Đpcm)

=> BH = CH (hai cạnh tương ứng)

=> H là trung điểm của BC

b) Xét t/giác AMH và t/giác ANH

có góc AMH = góc ANH = 900 (gt)

        AH : chung

  góc MAH = góc NAH (Cmt)

=> t/giác AMH = t/giác ANH (ch - gn)

=> AM = AN (hai cạnh tương ứng)

=> T/giác AMN là t/giác cân tại A

c) Gọi I là giao điểm của BC và MP

Ta có: T/giác AMH = t/giác ANH (Cmt)

=> MH = HN (hai cạnh tương ứng)

Mà HN = PH (gt)

=> MH = PH 

Ta lại có: góc AHM + góc MHB = 900 (phụ nhau)

              góc AHN + góc NHC = 900 (phụ nhau)

Và góc AHM = góc AHN (vì t/giác AHM = t/giác AHN)

=> góc MHB = góc NHC 

Mà góc NHC = góc BHP 

=> góc MHB = góc BHP

Xét t/giác MHI và t/giác PHI

có MH = PH (cmt)

   góc MHI = góc IHP (cmt)

  HI : chung

=> t/giác MHI = t/giác PHI (c.g.c)

=> MI = PI (hai cạnh tương ứng) => I là trung điểm của MP (1)

=> góc MIH = góc HIP (hai góc tương ứng)

Mà góc MIH + góc HIP = 1800

=> 2.góc MIH = 1800

=> góc MIH = 1800 : 2

=> góc MIH = 900

=> HI \(\perp\)MP (2)

Từ (1) và (2) suy ra HI là đường trung trực của đoạn thẳng MP

hay BC là đường trung trực của đoạc thẳng MP (Đpcm)

d) tự lm

28 tháng 2 2019

Cm: a) Xét t/giác ABH và t/giác ACH

có AB = AC (gt)

 góc AHB = góc AHC = 900 (gt)

 AH : chung

=> t/giác ABH = t/giác ACH (ch - cgn)

=> góc BAH = góc HAC (hai góc tương ứng)         (Đpcm)

=> BH = CH (hai cạnh tương ứng)

=> H là trung điểm của BC

b) Xét t/giác AMH và t/giác ANH

có góc AMH = góc ANH = 900 (gt)

        AH : chung

  góc MAH = góc NAH (Cmt)

=> t/giác AMH = t/giác ANH (ch - gn)

=> AM = AN (hai cạnh tương ứng)

=> T/giác AMN là t/giác cân tại A

c) Gọi I là giao điểm của BC và MP

Ta có: T/giác AMH = t/giác ANH (Cmt)

=> MH = HN (hai cạnh tương ứng)

Mà HN = PH (gt)

=> MH = PH 

Ta lại có: góc AHM + góc MHB = 900 (phụ nhau)

              góc AHN + góc NHC = 900 (phụ nhau)

Và góc AHM = góc AHN (vì t/giác AHM = t/giác AHN)

=> góc MHB = góc NHC 

Mà góc NHC = góc BHP 

=> góc MHB = góc BHP

Xét t/giác MHI và t/giác PHI

có MH = PH (cmt)

   góc MHI = góc IHP (cmt)

  HI : chung

=> t/giác MHI = t/giác PHI (c.g.c)

=> MI = PI (hai cạnh tương ứng) => I là trung điểm của MP (1)

=> góc MIH = góc HIP (hai góc tương ứng)

Mà góc MIH + góc HIP = 1800

=> 2.góc MIH = 1800

=> góc MIH = 1800 : 2

=> góc MIH = 900

=> HI MP (2)

Từ (1) và (2) suy ra HI là đường trung trực của đoạn thẳng MP

hay BC là đường trung trực của đoạc thẳng MP (Đpcm)

19 tháng 11 2021

a) Xét \(\Delta MOQ\) và \(\Delta NOP\) có:

\(OM=ON\)(O là trung điểm MN)

\(\widehat{MOQ}=\widehat{NOP}\) (đối đỉnh)

\(OP=OQ\) (O là trung điểm PQ)

\(\Rightarrow\Delta MOQ=\Delta NOP\left(c.g.c\right)\)

b) Xét \(\Delta MDO\) và \(\Delta NEO\) có:

\(MD=NE\left(gt\right)\)

\(\widehat{DMO}=\widehat{ONE}\left(\Delta MOQ=\Delta NOP\right)\)

\(OM=ON\) (O là trung điểm MN)

\(\Rightarrow\Delta MDO=\Delta NEO\left(c.g.c\right)\)

\(\Rightarrow\left\{{}\begin{matrix}OD=OE\\\widehat{DOM}=\widehat{EON}\end{matrix}\right.\)

Ta có: \(\widehat{DOM}=\widehat{EON}\left(cmt\right)\)

Mà \(\widehat{EON}+\widehat{MOE}=180^0\)(kề bù)

\(\Rightarrow\widehat{DOM}+\widehat{MOE}=180^0\Rightarrow\widehat{DOE}=180^0\)

\(\Rightarrow D,O,E\) thẳng hàng

Mà \(OD=OE\left(cmt\right)\)

=> O là trung điểm DE

4 tháng 1 2016

A D C O N M B

Xét \(\Delta\)AOD & \(\Delta\)COB có:

OA=OC(vì O là trung điểm AC)

góc AOD= góc COB(2 góc đối đỉnh)

OD=OB(vì O là trung điểm BD)

=>\(\Delta\)AOD=\(\Delta\)COB(c.g.c)

=>AD=CB(2 cạnh tương ứng)(1)

Vì N là trung điểm của AD

=>AN=ND=AD/2(2)

Vì M là trung điểm BC

=>MB=MC=BC/2(3)

Từ (1);(2);(3)=>AN=MC

Xét \(\Delta\)NOA & \(\Delta\)MOC có:

AN=MC(theo c/m trên)

ON=OM(vì O là trung điểm MN)

OA=ỌC(vì O là trung điểm AC)

=>\(\Delta\)NOA=\(\Delta\)MOC(c.c.c)

=>góc NOA= góc MOV(2 góc tương ứng)

Ta có: góc =180 độ

=>góc NOA+ góc NOC= 180 độ(2 góc kề bù)

=>góc MOC+góc NỚC=180 độ

=>góc NOM=180 độ

=>N,O,M thẳng hàng