K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2019

a) P(x) = 2x3 - 2x + x2 - x3 + 3x + 2

P(x) = (2x3 - x3) + x2 + (-2x + 3x) + 2

P(x) = x3 + x2 + x + 2

Q(x) = 4x3 - 5x2 + 3x - 4x - 3x3 + 4x2 + 1

Q(x) = (4x3 - 3x3) + (-5x2 + 4x2) + (3x - 4x) + 1

Q(x) = x3 + x2 - x + 1

b) P(x) + Q(x) = (2x3 - 2x + x2 - x3 + 3x + 2) + (4x3 - 5x2 + 3x - 4x - 3x3 + 4x2 + 1)

                       =  2x3 - 2x + x2 - x3 + 3x + 2 + 4x3 - 5x2 + 3x - 4x - 3x3 + 4x2 + 1

                       = (2x3 - x3 + 4x3 - 3x3) + (-2x + 3x + 3x - 4x) + (x2 - 5x2 + 4x2) + (2 + 1)

                       = 2x3 + 3

P(x) - Q(x) = (2x3 - 2x + x2 - x3 + 3x + 2) - (4x3 - 5x2 + 3x - 4x - 3x3 + 4x2 + 1)

                  = 2x3 - 2x + x2 - x3 + 3x + 2 + 4x3 + 5x2 - 3x + 4x + 3x3 - 4x2 - 1

                  = (2x3 - x3 + 4x3 + 3x2) + (-2x + 3x - 3x + 4x) + (x2 + 5x2 - 4x2) + (2 - 1)

                  = 8x2 + 2x + 2x2 + 1

c) P(-1) = 2.(-1)3 - 2.(-1) + (-1)- (-1)3 + 3.(-1) + 2

             = -2 - (-2) + 1 - (-1) - 3 + 2

             = 1

Q(2) = 2.23 - 2.2 + 22 - 23 + 3.2 + 2

        = 16 - 4 + 4 - 8 + 6 + 2

        = 16

20 tháng 6 2020

Đáp án:

Giải thích các bước giải:

 a) P(x) = 2x³ - 3x + x⁵ - 4x³ + 4x - x⁵ + x² - 2

            = -2x³ + x² + x - 2

Q(x) = x³ - 2x² + 3x + 1 + 2x²

        = x³ + 3x + 1

Sắp xếp theo thứ tự giảm dần của biến là:

P(x) = -2x³ + x² + x - 2

Q(x) = x³ + 3x + 1

b) P(x) + Q(x) = -2x³ + x² + x - 2 + x³ + 3x + 1 

                      = -x³ + x² + 4x - 1

P(x) - Q(x) = -2x³ + x² + x - 2 - x³ - 3x - 1 

                 = -4x³ + x² - 2x - 3 

20 tháng 6 2020

a) P(x) = 2x3 - 2x - x2 - x3 + 3x + 2

=> P(x) = (2x3 - x3) + (-2x + 3x) - x2 + 2

=> P(x) = x3 + x - x2 + 2

Sắp xếp : P(x) = x3 - x2 + x + 2

Q(x) = -4x3 + 5x2 - 3x + 4x + 3x3 - 4x2 + 1

=> Q(x) = (-4x3 + 3x3) + (5x2 - 4x2) + (-3x + 4x) + 1

=> Q(x) = -x3 + x2 + x + 1

Sắp xếp : Q(x) = -x3 + x2 + x + 1

b) H(x) = P(x) + Q(x)

=> H(x) = (x3 + x - x2 + 2) + (-x3 + x2 + x + 1)

=> H(x) = x3 + x - x2 + 2 - x3 + x2 +x + 1

=> H(x) = (x3 - x3) + (x + x) + (-x2 + x2) + (2 + 1)

=> H(x) = 2x + 3

K(x) = P(x) - Q(x)

=> K(x) = (x3 + x - x2 + 2) - (-x3 + x2 + x + 1)

=> K(x) = x3 + x - x2 + 2 + x3 - x2 - x - 1

=> K(x) = (x3 + x3) + (x - x) + (-x2 - x2) + (2 - 1)

=> K(x) = 2x3 - 2x2 + 1

c) Q(2) = -23 + 22 + 2 + 1 = -8 + 4 + 2 + 1 = -1( m k bt (-2)3 hay -23 nx nên thông cảm))

P(-1) = (-1)3 - (-1)2 + (-1) + 2 = -1 - 1 - 1 + 2 = -1

d) Để H(x) có nghiệm => 2x + 3 = 0 => 2x = -3 => \(x=-\frac{3}{2}\)

Vậy x = -3/2 là nghiệm của đa thức H(x)

P/s : K chắc :))

20 tháng 6 2020

a) Mình làm tắt

P(x) = x3 - x2 + x + 2

Q(x) = -x3 + x2 + x + 1

b) H(x) = P(x) + Q(x) 

            =  x3 - x2 + x + 2 - x3 + x2 + x + 1

            = 2x + 3

K(x) = P(x) - Q(x)

        = x3 - x2 + x + 2 - ( -x3 + x2 + x + 1 )

        = x3 - x2 + x + 2 + x3 - x2 - x - 1

        = 2x3 - 2x2 + 1

c) Q(2) = -(2)3 + 22 + 2 + 1 = -8 + 4 + 2 + 1 = -1

P(-1) =  13 - 12 + 1 + 2 = 1 - 1 + 1 + 2 = 3

d) H(x) = 2x + 3

H(x) = 0 <=> 2x + 3 = 0

              <=> 2x = -3

              <=> = -3/2

Vậy nghiệm của H(x) = -3/2

DD
23 tháng 5 2021

a) \(P\left(x\right)=2x^3-2x+x^2-x^3+3x+2\)

\(=\left(2x^3-x^3\right)+x^2+\left(-2x+3x\right)+2\)

\(=x^3+x^2+x+2\)

\(Q\left(x\right)=3x^3-4x^2+3x-4x-4x^3+5x^2+1\)

\(=\left(3x^3-4x^3\right)+\left(-4x^2+5x^2\right)+\left(3x-4x\right)+1\)

\(=-x^3+x^2-x+1\)

b) \(M\left(x\right)=P\left(x\right)+Q\left(x\right)\)

\(=\left(x^3+x^2+x+2\right)+\left(-x^3+x^2-x+1\right)\)

\(=2x^2+3\)

\(N\left(x\right)=P\left(x\right)-Q\left(x\right)\)

\(=\left(x^3+x^2+x+2\right)-\left(-x^3+x^2-x+1\right)\)

\(=2x^3+2x+1\)

c) \(M\left(x\right)=2x^2+3>0\)vì \(2x^2\ge0,3>0\)do đó đa thức \(M\left(x\right)\)vô nghiệm. 

21 tháng 3 2021

a, Sắp xếp : \(P\left(x\right)=2x^3+5x^2-3x^4+7-4x\)

\(\Rightarrow P\left(x\right)=-3x^4+2x^3-5x^2-4x+7\)

\(Q\left(x\right)=-3+2x^4-x+x^3-5x^2\)

\(\Rightarrow Q\left(x\right)=2x^4+x^3-5x^2-x-3\)

b, Ta có :* Đặt \(V\left(x\right)=P\left(x\right)+Q\left(x\right)\) 

hay \(V\left(x\right)=2x^3+5x^2-3x^4+7-4x-3+2x^4-x+x^3-5x^2\)

\(=3x^3-x^4+4-5x\)

Vậy \(V\left(x\right)=3x^3-x^4+4-5x\)

Ta có : * Đặt \(K\left(x\right)=P\left(x\right)-Q\left(x\right)\)

hay \(2x^3+5x^2-3x^4+7-4x-\left(-3+2x^4-x+x^3-5x^2\right)\)

\(=2x^3+5x^2-3x^4+7-4x+3-2x^4+x-x^3+5x^2\)

\(=x^3+10x^2-5x^4+10-3x\)

Vậy \(K\left(x\right)=x^3+10x^2-5x^4+10-3x\)

14 tháng 6 2020

................ =234567