K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(f\left(1\right)=a+b+c+d=a+3a+c+c+d=4a+2c+d\)

\(f\left(-2\right)=-8a+4b-2c+d\)

\(=-8a+4\left(3a+c\right)-2c+d\)

\(=-8a+12a+4c-2c+d\)

\(=4a+2c+d\)

=>f(1)=f(-2)

b: Đặt \(h\left(x\right)=0\)

=>(x-1)(x-4)=0

=>x=1 hoặc x=4

Đặt g(x)=0

\(\Leftrightarrow x^2+5x+1=0\)

\(\text{Δ}=5^2-4\cdot1\cdot1=21>0\)

Do đó PT có 2 nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{-5-\sqrt{21}}{2}\\x_2=\dfrac{-5+\sqrt{21}}{2}\end{matrix}\right.\)

=>h(x) và g(x) khôg có nghiệm chung

5 tháng 5 2018

a) f(-2) = -1; f(-1) = 0; f(0) = 1; f(2) = 3

g(-1) = 0,5; g(-2) = 2; g(0) = 0

b) f(x) = 2 ⇒ x = 1

g(x) = 2 ⇒ x = 2 hoặc x = -2

NV
25 tháng 2 2021

Với \(c=0\Rightarrow f\left(x\right)=0\) có nghiệm \(x=0\) (loại)

TH1: \(a;c\) trái dấu 

Xét pt \(f\left(x\right)=0\Leftrightarrow a\left(ax^2+bx+c\right)^2+b\left(ax^2+bx+c\right)+c=0\)

Đặt \(ax^2+bx+c=t\) \(\Rightarrow at^2+bt+c=0\) (1)

Do a; c trái dấu \(\Leftrightarrow\) (1) luôn có 2 nghiệm trái dấu.

Không mất tính tổng quát, giả sử \(t_1< 0< t_2\)

\(\Rightarrow\left[{}\begin{matrix}ax^2+bx+c=t_1\\ax^2+bx+c=t_2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}ax^2+bx+c-t_1=0\left(2\right)\\ax^2+bx+c-t_2=0\left(3\right)\end{matrix}\right.\)

Mà a; c trái dấu nên:

- Nếu \(a>0\Rightarrow c< 0\Rightarrow c-t_2< 0\Rightarrow a\left(c-t_2\right)< 0\)

\(\Rightarrow\) (3) có nghiệm hay \(f\left(x\right)=0\) có nghiệm (loại)

- Nếu \(a< 0\Rightarrow c>0\Rightarrow c-t_1>0\Rightarrow a\left(c-t_1\right)< 0\)

\(\Rightarrow\left(2\right)\) có nghiệm hay \(f\left(x\right)=0\) có nghiệm (loại)

Vậy đa thức \(f\left(x\right)\) luôn có nghiệm khi a; c trái dấu

\(\Rightarrow\)Để \(f\left(x\right)=0\) vô nghiệm thì điều kiện cần là \(a;c\) cùng dấu \(\Leftrightarrow ac>0\)

Khi đó xét \(g\left(x\right)=0\) có \(a.\left(-c\right)< 0\Rightarrow g\left(x\right)=0\) luôn có 2 nghiệm trái dấu (đpcm)

15 tháng 5 2018

a)F(x)=5x2-7+6x-8x3-x4=\(x^4-8x^3+5x^2+6x-7\)

\(G\left(x\right)=x^4+5+8x^3-5x^2=x^4+8x^3-5x^2+5\)

b)\(F\left(x\right)+G\left(x\right)=x^4-8x^3+5x^2+6x-7+x^4+8x^3-5x^2+5\)

\(=x^4+x^4-8x^3+8x^3+5x^2-5x^2+6x-7+5\)

=\(2x^4+6x-2\)

\(F\left(x\right)-G\left(x\right)=x^4-8x^3+5x^2+6x-7-x^4-8x^3+5x^2-5\)

\(=x^4-x^4-8x^3-8x^3+5x^2+5x^2+6x-7-5\)

=-16x3+10x2+6x-12

NM
8 tháng 12 2020

đồ thị hai hàm parabol có một điểm chung khi chúng có chung đỉnh

hay đỉnh I(1,3) của f(x) cũng là đỉnh của g(x)

dẫn đến giá trị nhỏ nhất của hai hàm là bằng nhau.

thế nên bài này sai ngay từ đề bài rồi nhé

hay nói cách khác , không tồn tại hai số a b thỏa mãn điều kiện trên

13 tháng 2 2017

\(\Leftrightarrow\left\{\begin{matrix}a.1+b=1\\a.2+b=4\end{matrix}\right.\Leftrightarrow\left(2a-a\right)+\left(b-b\right)=\left(4-1\right)=3\Rightarrow\left\{\begin{matrix}a=3\\b=-2\end{matrix}\right.\)

21 tháng 2 2017

ngonhuminh này , làm thế nào để tính được a và b.câu suy ra chưa hiểu lắm