K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2020

1, a,\(\left(-7x^2\right)\left(3x^2-x-2\right)\)

\(=-21x^4+7x^3+14x^2\)

\(b,\left(2x^3-3x^2-10x+3\right):\left(x-3\right)\)

2x^3-3x^2-10x+3 x-3 2x^2+3x-1 2x^3-6x^2 - 3x^2-10x+3 3x^2-9x - -x+3 -x+3 - 0

2,\(a,\left(x-3\right)\left(x^2+1\right)-\left(x-3\right)\left(x^2+3x+9\right)\)

\(=x^3+x-3x^2-3-x^3+27\)

\(=-3x^2+x+24\)

\(b,\left(2x+1\right)^2+\left(2x-1\right)^2+2\left(4x^2-1\right)\)

\(=4x^2+4x+1+4x^2-4x+1+8x^2-2\)

\(=24x^2\)

\(3,a,x^3-x^2-x+1\)

\(=x^2\left(x-1\right)-\left(x-1\right)\)

\(=\left(x-1\right)^2\left(x+1\right)\)

\(b,3x^2-7x-10\)

\(=3x^2+3x-10x-10\)

\(=3x\left(x+1\right)-10\left(x+1\right)\)

\(=\left(x+1\right)\left(3x-10\right)\)

4, a. Bn kiểm tra lại đề bài nhé

b,\(4x^2-12xy+10y^2\)

\(=\left(4x^2-12xy+9y^2\right)+y^2\)

\(=\left(2x-3y\right)^2+y^2\ge0\forall x,y\)

6 tháng 8 2020

Mk cx nghĩ thế nhưng vẫn k ra

6 tháng 8 2020

Thanh Nguyễn: chắc chắn đề sai rồi, mình tính rồi kiểm tra kết quả trên 1 web toán thì kết quả giống như mình đã tính luôn!

a) A = -4x2 - 14x + 10

b) = -2y4

3 tháng 2 2023

1) Áp dụng bđt Cauchy cho 3 số dương ta có

 \(\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{x}+x^3\ge4\sqrt[4]{\dfrac{1}{x}.\dfrac{1}{x}.\dfrac{1}{x}.x^3}=4\) (1)

\(\dfrac{3}{y^2}+y^2\ge2\sqrt{\dfrac{3}{y^2}.y^2}=2\sqrt{3}\) (2)

\(\dfrac{3}{z^3}+z=\dfrac{3}{z^3}+\dfrac{z}{3}+\dfrac{z}{3}+\dfrac{z}{3}\ge4\sqrt[4]{\dfrac{3}{z^3}.\dfrac{z}{3}.\dfrac{z}{3}.\dfrac{z}{3}}=4\sqrt{3}\) (3)

Cộng (1);(2);(3) theo vế ta được

\(\left(\dfrac{3}{x}+\dfrac{3}{y^2}+\dfrac{3}{z^3}\right)+\left(x^3+y^2+z\right)\ge4+2\sqrt{3}+4\sqrt{3}\)

\(\Leftrightarrow3\left(\dfrac{1}{x}+\dfrac{1}{y^2}+\dfrac{1}{z^3}\right)\ge3+4\sqrt{3}\)

\(\Leftrightarrow P\ge\dfrac{3+4\sqrt{3}}{3}\)

Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{x}=x^3\\\dfrac{3}{y^2}=y^2\\\dfrac{3}{z^3}=\dfrac{z}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\sqrt[4]{3}\\z=\sqrt{3}\end{matrix}\right.\) (thỏa mãn giả thiết ban đầu)

 

3 tháng 2 2023

2) Ta có \(4\sqrt{ab}=2.\sqrt{a}.2\sqrt{b}\le a+4b\)

Dấu"=" khi a = 4b

nên \(\dfrac{8}{7a+4b+4\sqrt{ab}}\ge\dfrac{8}{7a+4b+a+4b}=\dfrac{1}{a+b}\)

Khi đó \(P\ge\dfrac{1}{a+b}-\dfrac{1}{\sqrt{a+b}}+\sqrt{a+b}\)

Đặt \(\sqrt{a+b}=t>0\) ta được

\(P\ge\dfrac{1}{t^2}-\dfrac{1}{t}+t=\left(\dfrac{1}{t^2}-\dfrac{2}{t}+1\right)+\dfrac{1}{t}+t-1\)

\(=\left(\dfrac{1}{t}-1\right)^2+\dfrac{1}{t}+t-1\)

Có \(\dfrac{1}{t}+t\ge2\sqrt{\dfrac{1}{t}.t}=2\) (BĐT Cauchy cho 2 số dương)

nên \(P=\left(\dfrac{1}{t}-1\right)^2+\dfrac{1}{t}+t-1\ge\left(\dfrac{1}{t}-1\right)^2+1\ge1\)

Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{t}-1=0\\t=\dfrac{1}{t}\end{matrix}\right.\Leftrightarrow t=1\)(tm)

khi đó a + b = 1

mà a = 4b nên \(a=\dfrac{4}{5};b=\dfrac{1}{5}\)

Vậy MinP = 1 khi \(a=\dfrac{4}{5};b=\dfrac{1}{5}\)

 

23 tháng 3 2022

\(a)sin^4x+cos^4x=1-2sin^2x\cdot cos^2x\) 

\(\Leftrightarrow sin^4x+2sin^2x\cdot cos^2x+cos^4x=1\)

\(\Leftrightarrow\left(sin^2x+cos^2x\right)^2=1\)(luôn đúng)

18 tháng 7 2022

a) \sin ^{4} x+\cos ^{4} x=\sin ^{4} x+\cos ^{4} x+2 \sin ^{2} x \cos ^{2} x-2 \sin ^{2} x \cos ^{2} x
\begin{aligned}&=\left(\sin ^{2} x+\cos ^{2} x\right)^{2}-2 \sin ^{2} x \cos ^{2} x \\&=1-2 \sin ^{2} x \cos ^{2} x\end{aligned}

b) \dfrac{1+\cot x}{1-\cot x}=\dfrac{1+\dfrac{1}{\tan x}}{1-\dfrac{1}{\tan x}}=\dfrac{\dfrac{\tan x+1}{\tan x}}{\dfrac{\tan x-1}{\tan x}}=\dfrac{\tan x+1}{\tan x-1}

c) \dfrac{\cos x+\sin x}{\cos ^{3} x}=\dfrac{1}{\cos ^{2} x}+\dfrac{\sin x}{\cos ^{3} x}=\tan ^{2} x+1+\tan x\left(\tan ^{2} x+1\right)
=\tan ^{3} x+\tan ^{2} x+\tan x+1

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

Biểu thức \(C =  - \frac{2}{3}{x^2} + 7x - 4\) là tam thức bậc hai

Biểu thức A không là tam thức bậc hai vì chứa \(\sqrt x \)

Biểu thức B không là tam thức bậc hai vì chứa \({x^4}\)

Biểu thức D không là tam thức bậc hai vì chứa \({\left( {\frac{1}{x}} \right)^2}\)

14 tháng 10 2017

a)

\(A=3\left(x-y\right)^2-2\left(x+y\right)^2-\left(x-y\right)\left(x+y\right)\)\(2A=\left[\left(x-y\right)-\left(x+y\right)\right]^2+5\left(x-y\right)^2-5\left(x+y\right)^2\)

\(2A=4y^2+5\left[\left(x-y\right)-\left(x+y\right)\right]\left[\left(x-y\right)+\left(x+y\right)\right]\)\(2A=4y^2+5\left[-2y\right]\left[2x\right]=4y^2-20xy=4y\left(y-5x\right)\\ \)\(A=2y\left(y-5x\right)\)

1. Tìm tập nghiệm của bất pt |2x-5|<3? 2. Tất cả các giá trị của x thỏa mãn|x-1|<1 là..? 3. Nghiệm của bpt |2x-3|≤1 là? 4. Bpt |3x-4| ≤2 có nghiệm là? 5. Cho biểu thức f(x)=2x-4. Tập hợp các giá trị của x để f(x) ≥0 là..? 6. Cho biểu thức f(x)= 1/3x-6 tập hợp tất cả các gtrị của x để f(x)≤0 là? 7. Cho bthức f(x)=(2-x/x+1) +2. Tập hợp tất cả các giá trị của X thỏa mãn bpt f(x)<0 là? 8. Cho biểu thức f(x)=1-...
Đọc tiếp

1. Tìm tập nghiệm của bất pt |2x-5|<3?
2. Tất cả các giá trị của x thỏa mãn|x-1|<1 là..?
3. Nghiệm của bpt |2x-3|≤1 là?
4. Bpt |3x-4| ≤2 có nghiệm là?
5. Cho biểu thức f(x)=2x-4. Tập hợp các giá trị của x để f(x) ≥0 là..?
6. Cho biểu thức f(x)= 1/3x-6 tập hợp tất cả các gtrị của x để f(x)≤0 là?
7. Cho bthức f(x)=(2-x/x+1) +2. Tập hợp tất cả các giá trị của X thỏa mãn bpt f(x)<0 là?
8. Cho biểu thức f(x)=1- (2-x/3x-2). Tập hợp tất cả các gtrị của X thỏa mãn bpt f(x)≤0 là?
9. Tập nghiệm của bpt (x-1/x-3)-1<0 là?
10. Số x=2 là nghiệm của bpt nào sau đây:
a) 4-X<1 b) 2X+1<3
c) 3X-7>X d)5X-2>3
11. Tập nghiệm của bpt -4x+1/3x+1≤-3 là?
12. Với X thuộc tập hợp nào thì nhị thức bật nhất f(x)-(x-1)(x+3) không âm?
13. Tập nghiệm S=(-4;5) là tập nghiệm của bpt nào dưới đây:
a)(x+4)(x+5)<0
b)(x+4)(5x-25)<0
c)(x+4)(5x-25)≥0
d) (x-4)(x-5) <0
14. Tổng các tập nghiệm của bpt (x+3)(x-1)≤ 0 là?

GIẢI RA HẾT DÙM EM VỚI Ạ :((

0