K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2016

pt đã cho<=> 4x+ 12y+ 12xy - 32x - 64y + 92 =0

                 <=> (4x2 + 9y+12xy - 32x -48y +64) + ( 3y-16y +28) =0

                 <=>  (2x+3y-8)+ (3y2 -16y +28) =0

                  <=> 3(2x+3y-8)2 + (9y-48y +84) =0

                  <=> 3(2x+3y-8)+(3y-8)+ 20=0 (pt vô nghiệm)

 

9 tháng 7 2016

ko vô nghiệm đâu bạn

 

14 tháng 12 2021

a, Vì SA là tiếp tuyến đường tròn (O) với A là tiếp điểm 

=> ^SAO = 900 hay tam giác SAO vuông tại A

Theo định lí Pytago tam giác SAO ta có : 

\(SA=\sqrt{SO^2-AO^2}=\sqrt{25-9}=4\)cm 

b, Xét tam giác SAO vuông tại A, AH là đường cao 

Áp dụng hệ thức : \(AH.SO=AS.AO\Rightarrow AH=\frac{AS.AO}{SO}=\frac{4.3}{5}=\frac{12}{5}\)cm 

Áp dụng hệ thức : \(AO^2=HO.SO\Rightarrow HO=\frac{AO^2}{SO}=\frac{9}{5}\)cm 

c, Ta có : SB = SA ( tc tiếp tuyến cắt nhau ) 

AO = BO = R 

Vậy SO là đường trung trực đoạn AB 

mà AH vuông SO => HB vuông SO 

=> A;H;B thẳng hàng 

16 tháng 12 2021
a, AB là tiếp tuyến của đường tròn (O) ⇒AB vuông góc OB ⇒ΔAOB vuông tại B +, AO²=AB²+BO² (pytago) AB²=5²-3²=16 ⇒AB=4cm +, BO²=OH.OA (hệ thức lượng) ⇒OH=3²/5=1,8cm +, Sin OAB=OB/OA=3/5 ⇒Góc OAB=40°58' +, ΔODH vuông tại H ⇒OD²=OH²+DH² ⇒DH=3²-1,8²=5,76 ⇒DH=2,4 +, BD=2DH=4,8 b. Ta có OH là phân giác góc BOD (do ΔOBD cân tại O, OH là đg cao đồng thời là cân giác) mà A€OH ⇒OA là phân giác của BOC ⇒góc AOB=góc AOD +, ΔABO và ΔADO có OB=OD=R AO chung ​góc AOB=góc AOD ⇒ΔABO=ΔADO (c.g.c) ⇒Góc ABO=góc ADO=90° ⇒AD vuông góc OD ⇒AD là tiếp tuyến c. B, M, D cùng € 1 đg tròn. Đg kính BM ⇒góc BDM=90° ⇒BD vuông góc DM Mà BD vuông góc OA ⇒MD//OA d. Ta có AB=AD (t/c 2 t² cắt nhau) ND=NM (t/c 2 t² cắt nhau) mà AN=AD+DN ⇒AN=AB+MN AHDI là hcn là vô lí (hình vẽ)

Bài tập Tất cả

30 tháng 5 2018

a)

<=>(x-y)+(x-y)/xy≥0

(x-y)(1-1/xy)≥0

x,y≥1=> 1/(xy)≤1=(1-1/(xy)≥0

x≥y=>x-y≥0

=> (x-y)(1-1/xy)≥0 => dccm

dang thuc khi x=y

or x.y=1

1. Cho hai biểu thức A=\(\frac{4\sqrt{x}}{x-1}\) B = \(\frac{1}{\sqrt{x}+1}+\frac{\sqrt{1}}{\sqrt{x}-1}+\frac{2}{x-1}\)với x ≥ 0, x≠1.a) Tính giá trị của A khi x =4b) Rút gọn các biểu thức Bc) Tìm các giá trị của x để A = 322. Cho biểu thức A=\(\left(1+\frac{\sqrt{x}}{x+1}\right):\left(\frac{1}{\sqrt{x-1}}-\frac{2\sqrt{x}}{\left(x+1\right)\left(\sqrt{x}-1\right)}\right)\) với x ≥ 0, x≠1a) Rút gọn Ab) Tính giá trị của A khi x = 6 +...
Đọc tiếp

1. Cho hai biểu thức A=\(\frac{4\sqrt{x}}{x-1}\) B = \(\frac{1}{\sqrt{x}+1}+\frac{\sqrt{1}}{\sqrt{x}-1}+\frac{2}{x-1}\)với x ≥ 0, x≠1.

a) Tính giá trị của A khi x =4

b) Rút gọn các biểu thức B

c) Tìm các giá trị của x để A = 32

2. Cho biểu thức A=\(\left(1+\frac{\sqrt{x}}{x+1}\right):\left(\frac{1}{\sqrt{x-1}}-\frac{2\sqrt{x}}{\left(x+1\right)\left(\sqrt{x}-1\right)}\right)\) với x ≥ 0, x≠1

a) Rút gọn A

b) Tính giá trị của A khi x = 6 + 2√5

c) Tìm x để A = 7

3. Cho biểu thức A =\(\frac{\sqrt{x}+3}{\sqrt{x}-2}\) B=  \(\sqrt{x}-\frac{x+2\sqrt{x}+4}{\sqrt{x}+3}\) với x > 0, x ≠ 4.

a) Tính giá trị của A khi x = 9

b) Rút gọn biểu thức B

c) Tìm x để \(A.B=\frac{1}{3}\)

4. Cho hai biểu thức A =\(\frac{2\sqrt{x}}{x-9}-\frac{2}{\sqrt{x+3}}\) và B = \(\frac{3}{x-3\sqrt{x}}\), với x > 0, x ≠ 9

a) Tính giá trị của B khi x = 25

b) Rút gọn biểu thức A

c) Tìm giá trị của x để \(\frac{B}{A}=\frac{2\sqrt{x}+1}{2}\)

0