Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\sqrt{17}-4\) b) \(\sqrt{3}\) c) \(\frac{\sqrt{2}}{2}\) d)\(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) e) \(x-\sqrt{5}\)
f) \(4+2\sqrt{3}\) g) \(3+2\sqrt{2}\) h) \(x+\sqrt{x}+1\) i) \(\frac{3\sqrt{5}-\sqrt{15}}{10}\)
k) \(\sqrt{5}+\sqrt{6}\) i) 5 h) 0 l) \(\sqrt{5}+\sqrt{3}\) m) \(\frac{20\sqrt{3}}{3}\) d) 0
![](https://rs.olm.vn/images/avt/0.png?1311)
từ dòng cuối là sai rồi bạn à
Bạn bỏ dòng cuối đi còn lại đúng rồi
Ở tử đặt nhân tử chung căn x chung rồi lại đặt căn x +1 chung
Ở mẫu tách 3 căn x ra 2 căn x +căn x rồi đặt nhân tử 2 căn x ra
rút gọn được \(\frac{3\sqrt{x}-5}{2\sqrt{x}+1}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
TL:
\(a,\sqrt{\left(\sqrt{3}-x\right)^2}=\sqrt{3}-x\)
BT thỏa mãn \(\forall x\)
a) \(\sqrt{\left(\sqrt{3}-x\right)^2}=\left|\sqrt{3}-x\right|\)
Vậy biểu thức có nghĩa với mọi x
b) \(\sqrt{\frac{-3}{2+x}}\)
Biểu thức có nghĩa\(\Leftrightarrow2+x< 0\Leftrightarrow x< -2\)
ĐK:...
\(g\left(x\right)=\text{}\)\(\frac{3+\sqrt{5}}{\sqrt{3}+\sqrt{3+\sqrt{5}}}+\frac{3-\sqrt{5}}{\sqrt{3}-\sqrt{3-\sqrt{5}}}\)
\(=\frac{\left(3+\sqrt{5}\right)\left(\sqrt{3}-\sqrt{3+\sqrt{5}}\right)}{\left(\sqrt{3}+\sqrt{3+\sqrt{5}}\right)\left(\sqrt{3}-\sqrt{3+\sqrt{5}}\right)}+\frac{\left(3-\sqrt{5}\right)\left(\sqrt{3}+\sqrt{3-\sqrt{5}}\right)}{\left(\sqrt{3}-\sqrt{3-\sqrt{5}}\right)\left(\sqrt{3}+\sqrt{3-\sqrt{5}}\right)}\)
\(=\frac{3\sqrt{3}+\sqrt{15}-3\sqrt{3+\sqrt{5}}-\sqrt{5}\sqrt{3+\sqrt{5}}}{-\sqrt{5}}+\frac{3\sqrt{3}-\sqrt{15}+3\sqrt{3-\sqrt{5}}-\sqrt{5}\sqrt{3-\sqrt{5}}}{\sqrt{5}}\)\(=\frac{-2\sqrt{15}+3\sqrt{3+\sqrt{5}}+3\sqrt{3-\sqrt{5}}+\sqrt{5}\sqrt{3+\sqrt{5}}-\sqrt{5}\sqrt{3-\sqrt{5}}}{\sqrt{5}}\)
\(=\frac{-4\sqrt{15}+3\sqrt{12+4\sqrt{5}}+3\sqrt{12-4\sqrt{5}}+\sqrt{5}\sqrt{12+4\sqrt{5}}-\sqrt{5}\sqrt{12-4\sqrt{5}}}{2\sqrt{5}}\)
\(=\frac{-4\sqrt{15}+3\left(\sqrt{2}+\sqrt{10}\right)+3\left(\sqrt{10}-\sqrt{2}\right)+\sqrt{5}\left(\sqrt{2}+\sqrt{10}\right)-\sqrt{5}\left(\sqrt{10}-\sqrt{2}\right)}{2\sqrt{5}}\)
\(=\frac{-4\sqrt{15}+6\sqrt{10}+2\sqrt{10}}{2\sqrt{5}}=-2\sqrt{3}+4\sqrt{2}\)