Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn tự vẽ hình nha
a) Ta có:
\(\widehat{xOz}+\widehat{zOy}=90^o\)
Mà \(\widehat{xOz}=\widehat{nOy}\left(gt\right)\) ; Mà \(\widehat{zOy}=\widehat{xOm}\left(gt\right)\)
=>\(\widehat{nOy}+\widehat{zOy}=90^o\) ; =>\(\widehat{xOz}+\widehat{xOm}=90^o\)
\(\widehat{nOz}=90^o\) ; \(\widehat{zOm}=90^o\)
Ta có:
\(\widehat{nOm}=\widehat{nOz}+\widehat{zOm}=90^o+90^o=180^o\)
=> Om,On là hai tia đối nhau
b) Ta có:
\(Oz⊥MN\left(\widehat{nOz}=\widehat{mOz}=90^o\right)\)
Mà \(OM=ON\left(gt\right)\)
=> Oz là đường trung trực của MN
a) Ta có góc CDE bằng góc C và bằng 50 độ
Góc DAB + Góc BAC = 180 độ ( kề bù )
Mà BAC = 80 độ ( gt ) nên góc DAB = 180 độ - 80 độ = 100 độ
AM là tia phân giác của góc DAB nên góc DAM = 100 độ / 2 = 50 độ
Mặt khác: góc DAM = góc CDE = 50 độ và nằm ở vị trí SLT nên DE//AM
b) ta có: góc CDE so le trong với góc C và bằng góc C ( gt ) nên DE//BC
Mặt khác: DE//BC
DE//MA
Vậy: BC//MA ( định lí )
a) AM là tia phân giác của góc BAD (gt)
=> \(\widehat{DAM}=\widehat{MAB}=\dfrac{180^o-\widehat{BAC}}{2}=\dfrac{180^o-80^o}{2}=\dfrac{100^o}{2}=50^o\) (1)
Trên tia đối của tia AD là tia đối tia AC, \(\widehat{CDE}\) bằng và so le trong với góc C của ΔABC (gt)
=> \(\widehat{CDE}=50^o\) (2)
Từ (1) và (2) => \(\widehat{CDE}=\widehat{MAD}=50^o\)
Mà 2 góc này ở vị trí so le trong
=> DE//AM (*)
b) Cách 1: Nếu bạn đã học qua kiến thức này thì bạn có thể dùng
Trên tia đối của tia AD là tia đối tia AC, \(\widehat{CDE}\) bằng và so le trong với góc C của ΔABC (gt)
=> BC//DE (**)
Từ (*) và (**) => BC//AM
Cách 2: Nếu bạn chưa đc học kiến thức của Cách 1 thì dùng cách này
\(\widehat{MAC}+\widehat{ACB}=\left(50^o+80^o\right)+50^o=130^o+50^o=180^o\)
=> \(\widehat{MAC}\) và \(\widehat{ACB}\) là 2 góc trong cùng phía bù nhau
=> BC//AM
Chúc bạn học tốt!!!
Các cặp góc đối đỉnh : yON và MOA ; MOy và NOA
( theo đề là At // MN về 1 phía nhé )
Các cặp góc so le trong : MOA và OAt ; yON và OAt ;NOA và TAx
Các cặp góc trong cùng phía : NOA và OAt