Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét Δ OCI và Δ ODI có:
OC=OD (GT)
OI chung
^COI=^DOI (GT)
=>Δ OCI= ΔODI (C-G-C)
TA CÓ :^COI=^DOI (GT)=>OI LÀ TIA PHÂN GIÁC ^COD (ĐPCM)
B) XÉT Δ CJO VÀ Δ DJO có:
OJ CHUNG
OC=OD (GT)
^COJ=^DOJ(GT)
=> Δ CJO = Δ DJO ( C-G-C)
=> ^CJO =^ DJO ( 2 GÓC TƯƠNG ỨNG) (1)
MÀ ^ CJO + ^DJO= 180 ' (2)
TỪ (1) VÀ (2) => ^CJO=^CDO= ^CJD/2= 180'/2= 90'
=> CD VUÔNG GÓC OJ
MẶT KHÁC : JC=JD ( ΔCJO = Δ DJO)
=> OJ LÀ ĐƯỜNG TRUNG TRỰC ( ĐPCM)
NHỚ VOTE CHO TUI 5 SAO NHA CẢM ƠN CÁC BẠN NHIỀU Ạ
O x y z D C I J
gt : - cho góc xOy
- c \(\in Ox\) , D \(\in\) Oy và OC = OD
- I \(\in\) Oz và Góc yOz = zOx
-OI > OC
kl : IC = ID
góc DOI = IOC
OJ là đường trung trực của CD
a) Xét ΔDOI và ΔCOI , có :
OC = OD ( gt )
OI là cạnh chung
góc DOI = góc COI ( Oz là tia phân giác của góc xOy )
=> ΔDOI = ΔCOI ( cgc )
=> IC = ID ( 2 góc tương ứng )
=> góc DIO = góc CIO ( 2 góc tương ứng ) => OI là tia phân giác của góc CID
b)
Xét ΔOJC và ΔOJD , có :
OC = OD ( gt )
OI là cạnh chung
góc DOI = góc COI ( Oz là tia phân giác của góc xOy )
=> ΔCOJ = ΔDOJ ( cgc )
=> DJ = CJ ( 2 cạnh tương ứng ) (1)
=> góc OJD = OJC ( 2 góc tương ứng ) và OJD + OJC = 1800 ( 2 góc kề bù )
=> góc OJD = OJC = \(\frac{180^0}{2}=90^0\) ( 2)
Từ (1) và (2) => OI là đường trung trực của CD
a: Xét ΔOCI và ΔODI có
OC=OD
\(\widehat{COI}=\widehat{DOI}\)
OI chung
Do đó: ΔOCI=ΔODI
Suy ra: IC=ID
b: Ta có: ΔOCD cân tại O
mà OH là đường phân giác
nên H là trung điểm của CD
hay CH=DH
O x y z t A D B C I
Xét tam giác ODB và tam giác OAC có: OD = OA
góc AOC = góc BOD (=90o)
OB = OC
=> tam giác ODB = tam giác OAC (c.g.c)=> AC = BD (2 cạnh t,ư )
b/Ta có góc DOC + COB = zOx = 90o
AOB + BOC = tOy = 90o
=> góc DOC = AOB mà OD =OA, OC = OB
=> tam giác ODC = OAB (c.g.c) => DC = AB (1)
Dễ có tam giác DCB = ABC (Vì BC chung, DC=AB,DB =AC )
=> góc CDB = CAB (2 góc t.ư) (2)
Dễ có tam giác CDA = BAD (vì AD chung, CD = AB, DB =AC ) => góc DCA = góc DBA (2 góc t.ư) (3)
Từ (1)(2)(3) => tam giác IDC =IAB (g.c.g)
=> ID = IA, IC = IB (cặp canh tương ứng )
Dễ có tam giác OIC = OIB (c.c.c)
=> góc COI = góc BOI (2 góc t.ư)
=> tia OI là phân giác của góc xOy
a, Xét △OBD vuông tại D và △OAC vuông tại C
Có: xOy là cạnh chung
OB = OA (gt)
=> △OBD = △OAC (ch-gn)
b, Vì △OBD = △OAC (cmt) => OD = OC (2 cạnh tương ứng) và OBD = OAC (2 góc tương ứng)
Ta có: OD + AD = OA và OC + CB = OB
Mà OA = OB (gt) ; OD = OC (cmt)
=> AD =BC
Xét △CIB vuông tại C và △DIA vuông tại D
Có: BC = AD (cmt)
CBI = DAI (2 góc tương ứng)
=> △CIB = △DIA (cgv-gnk)
=> IC = ID (2 cạnh tương ứng)
c, Xét △AOI và △BOI
Có: OA = OB (gt)
OI là cạnh chung
IA = IB (△DIA = △CIB)
=> △AOI = △BOI (c.c.c)
=> AOI = BOI (2 góc tương ứng)
=> OI là tia phân giác của góc AOB
hay OI là tia phân giác của góc xOy