K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2019

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Xét  ∆ OAD và ∆ BAC, ta có:

OA = AB (tính chất đối xứng tâm)

∠ A 1 =  ∠ A 2 (đối đỉnh)

∠ O 1 =  ∠ B 1 (so le trong)

Do đó:  ∆ OAD =  ∆ BAC (g.c.g)

⇒ AD = AC

Suy ra: C đối xứng với D qua A.

30 tháng 6 2017

Đối xứng tâm

a: Ta có: B đối xứng với A qua Ox

nên OA=OB(1)

Ta có: C đối xứng với A qua Oy

nên OA=OC(2)

Từ (1) và (2) suy ra OB=OC

12 tháng 3 2017

Giải bài 54 trang 96 Toán 8 Tập 1 | Giải bài tập Toán 8

+ B đối xứng với A qua Ox

⇒ Ox là đường trung trực của AB

⇒ OA = OB (1)

+ C đối xứng với A qua Oy

⇒ Oy là đường trung trực của AC

⇒ OA = OC (2)

Từ (1) và (2) suy ra OB = OC (*).

+ Xét ΔOAC cân tại O (do OA = OC) có Oy là đường trung trực

⇒ Oy đồng thời là đường phân giác

Giải bài 54 trang 96 Toán 8 Tập 1 | Giải bài tập Toán 8

Xét ΔOAB cân tại O có Ox là đường trung trực

⇒ Ox đồng thời là đường phân giác

Giải bài 54 trang 96 Toán 8 Tập 1 | Giải bài tập Toán 8

⇒ B, O, C thẳng hàng (**)

Từ (*) và (**) suy ra O là trung điểm BC

⇒ B đối xứng với C qua O.

18 tháng 9 2017

Bài tập: Đối xứng tâm | Lý thuyết và Bài tập Toán 8 có đáp án

Vẽ AH ⊥ Ox, AK ⊥ Oy

Vẽ hai điểm B, C sao cho H, K lần lượt là trung điểm của AB, AC thì B là điểm đối xứng với A qua Ox, C là điểm đối xứng với A qua Oy.

Vì O ∈ Ox, O ∈ Oy nên O đối xứng với O qua Ox, Oy.

Áp dụng tính chất của phép đối xứng ta được

Bài tập: Đối xứng tâm | Lý thuyết và Bài tập Toán 8 có đáp án

Bài tập: Đối xứng tâm | Lý thuyết và Bài tập Toán 8 có đáp án

⇒ B O C ^ = 180 0 . ( 2 )

Từ ( 1 ), ( 2 ) suy ra O là trung điểm của BC hay B đối xứng với C qua O.

11 tháng 10 2018

O x y B C

P.s: hình viết thiếu điểm A :))

Vì A và B đối xứng với nhau qua Ox => Ox là trung trực của AB

=> OB = OA (1)

C/m tương tự cũng có OA = OC (2)

Từ (1) và (2) => OB = OC => B và C đối xứng với nhau qua O ( đpcm )

1 tháng 7 2020

( vào TKHĐ là thấy hình )

+ B đối xứng với A qua Ox

=> Ox là đường trung trực của AB

=> OA = OB (1)

+ C đối xứng với A qua Oy

=> Oy là đường trung trực của AC

=> OA = OC (2)

Từ (1) và (2) suy ra OB = OC (*).

+ Xét ΔOAC cân tại O (do OA = OC) có Oy là đường trung trực

=> Oy đồng thời là đường phân giác

\(\Rightarrow\widehat{O_1}=\widehat{O_2}\)

Xét ΔOAB cân tại O có Ox là đường trung trực

=> Ox đồng thời là đường phân giác

\(\Rightarrow\widehat{O_3}=\widehat{O_4}\)

Từ đó ta có :

\(\widehat{BOC}=\widehat{O_1}+\widehat{O_2}+\widehat{O_3}+\widehat{O_4}\)

\(=2.\widehat{O_2}+2.\widehat{O_3}=2.\left(\widehat{O_2}+\widehat{O_3}\right)\)

\(=2.\widehat{xOy}=2.90^o=180^o\)

=> B, O, C thẳng hàng (**)

Từ (*) và (**) suy ra O là trung điểm BC

=> B đối xứng với C qua O.

6 tháng 11 2018

a) 

O x A D E B y D

GTGóc xOy; A ∈ xOy; AD = BD; Ox ⊥ AB; AE = EC; Oy ⊥ AC
KLTứ giác ODAE là hình ... ? 

b) Xét tứ giác ODAE có ADO = DOE = OEA = 900

=> tứ giác ODAE là hình chữ nhật

16 tháng 7 2017

Để B đối xứng với Cqua O thì  x O y ^  = 900