Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔAOD và ΔBOC có
OA/OB=OD/OC
góc AOD chung
Do đó: ΔAOD\(\sim\)ΔBOC
a: Xét ΔOAB và ΔOCD có
OA/OC=OB/OD
góc O chung
=>ΔOAB đồng dạng với ΔOCD
b: Xét ΔMDA và ΔMBC có
góc MAD=góc MCB
góc DMA=góc BMC
=>ΔMDA đồng dạng với ΔMBC
=>MD/MB=MA/MC
=>MD*MC=MB*MA
c: ΔOAB đồng dạng với ΔOCD
=>OA/OC=OB/OD=AB/CD=C OAB/ C OCD
=>C OAB/C OCD=OA/OC=8/6=4/3
=>C OAB/4=C OCD/3=38,5/7=5,5
=>C OAB=22; C OCD=16,5
=>AB+OA+OB=22 và CD+OC+OD=16,5
=>AB=22-8-4=10cm và CD=16,5-6-3=16,5-9=7,5cm
Bổ sung ĐK : ^xOy \(\ne\)1800
Xét tam giác AOB và tam giác COA ta có :
O _ chung
\(\frac{OA}{OC}=\frac{OB}{OA}=\frac{4}{8}=\frac{2}{4}=\frac{1}{2}\)
Vậy tam giác AOB ~ tam giác COA ( c.g.c )
a: Xet ΔOCB và ΔOAD có
OC/OA=OB/OD
góc O chung
=>ΔOCB đồng dạng với ΔOAD
b: ΔOCB đồng dạng với ΔOAD
=>góc OCB=góc OAD
=>góc IAB=góc ICD
=>góc IBA=góc IDC; góc AIB=góc CID