Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình nha!
Tam giác AOC có: AO = CO nên tam giác AOC cân tại O
\(\Rightarrow OAC=\frac{180-O}{2}\)
Tam giác BOD có OB = OD nên tam giác BOD cân tại O
\(\Rightarrow OBD=\frac{180-O}{2}\)
\(\Rightarrow OAC=OBD\)Mà hai góc này ở vị trí đồng vị nên AC song song với BD.
Xét tg OAD và tg OCB có
\(\left\{{}\begin{matrix}\widehat{xOy}.chung\\OA=OC\\OB=OD\end{matrix}\right.\Rightarrow\Delta OAD=\Delta OCB\left(c.g.c\right)\\ \Rightarrow AD=BC\left(2.cạnh.tương.ứng\right)\)
a, Trước hết ta thấy \(\widehat{IAC}=\widehat{BAK}=140^0\)
\(\Delta IAC=\Delta BAK(c.g.c)\Rightarrow IC=BK\)
b, Gọi D là giao điểm của AB và IC,gọi E là giao điểm của IC và BK . Xét \(\Delta AID\)và \(\Delta EBD\), ta có : \(\widehat{AID}=\widehat{EBD}\)do \(\Delta IAC=\Delta BAK\)
\(\widehat{ADI}=\widehat{EDB}\)đối đỉnh nên \(\widehat{IAD}=\widehat{BED}\)
Do \(\widehat{ADI}=90^0\)nên \(\widehat{IAD}=90^0\). Vậy \(IC\perp BK\).
Xét ΔOAD và ΔOCB có
OA=OC
góc O chung
OD=OB
=>ΔOAD=ΔOCB
=>AD=BC
XET tg obc va oad ta co
oc=od
o la goc chung
ob = oa
do đó tg obc = tg oad (c.g.c)
Xét hai tam giác \(\Delta OAD;\Delta OCB\)có OA = OC,OB = OD \((gt)\)và góc xOy chung,suy ra \(\Delta OAD=\Delta OCB(c.g.c)\)=> AD = BC