K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2019

mãi mới có 1 bài toán lớp 7 

hình :

O x y A B I M

xét  \(\Delta OAI\)và \(\Delta OBI\)

         OA  = OB ( gt)

         IA=IB ( I là trung điểm của AB)

         OI - cạnh chung

=>\(\Delta OAI\)=\(\Delta OBI\)(c.c.c)

vì \(\Delta OAI\)=\(\Delta OBI\)

=>\(\widehat{AOI}\)=\(\widehat{BOI}\)(2 góc tương ứng)

OI nằm giữa 2 tia Ox và Oy

=> OI là pg của \(\widehat{xOy}\)

câu 2 và 3 dễ rồi bạn tự làm đi được ko z mik lười lắm

17 tháng 8 2015

A) xet tam giac BCO vuong tai C va tam giac AMO vuong tai M ta co 

OB= OA ( gt)  goc BOC= goc AOM ( goc chung )

--> tam giac BCO = tam giac AMO ( ch-gn)

--> BC= AM

b)xet tam giac OMK vuong tai M va tam giac OCK vuong tai C ta co

OK=OK ( canh chung )

 OM=OC ( tam giac OAM= tam giac OBC)

--> tam giac OMK = tam giac OCK ( ch-cgv)

4 tháng 3 2017

em mới lớp 4 thời chưa biết đâu còn non lắm chị ạ

a: Xét ΔAOC vuông tại C và ΔBOD vuông tại D có

OA=OB

góc O chung

=>ΔAOC=ΔBOD

b: góc CAO+góc IAB=góc OAB

góc OBD+góc IBA=góc OBA

mà góc CAO=góc OBD và góc OAB=góc OBA

nên góc IAB=góc IBA

=>ΔIAB cân tại I

c: IC=ID

ID<IA

=>IC<IA

15 tháng 1 2017

a) Xét Tàm giác vuông OBK và Tam giác vuông OAH có :

OA = OB (GT)

<O chung 

=> Tam giác vuông OBK = Tam giác vuông OAH   ( cạnh góc vuông - góc nhọn kề )

=> OH = OK  (2CTU)

Xét Tam giác OHK có :

OH = OK 

=> Tam giác OHK cân tại O     (dpcm)

b) Vì Tam giác OBK và Tam giác OAH  (cmt)

=> <OKB = <OHA (2GTU)

TC : OH = OK (cmt)

 OA = OB (GT)

mà OH = OB + BH

    OK = OA + AK 

=> AK = BH 

Xét Tam giác vuông AIK và Tam giác vuông BIH

AK = BH

<OKB = <OHA 

=> Tam giác vuông AIK = Tam giác vuông BIH  ( cạnh góc vuông - góc nhọn kề)

=> AI = BI  (2CTU)

Xét Tam giác OAI = Tam giác OBI có :

OA = OB (GT)

OI chung 

AI = BI (cmt)

=> Tam giác OAI = Tam giác OBI  (c.c.c)

=> <AOI = <BOI  (2GTU)

=> OI là tia phân giác của <xOy    (dpcm)

20 tháng 1 2017

Cảm ơn bạn nhiều

16 tháng 10 2019

a) Xét ΔOHA vuông tại H và ΔOKB vuông tại K có 

OA=OB(gt)

\(\widehat{AOH}\) chung

Do đó: ΔOHA=ΔOKB(cạnh huyền-góc nhọn)

b)

Xét ΔOAB có OA=OB(gt)

nên ΔOAB cân tại O(Định nghĩa tam giác cân)

Xét ΔAHB vuông tại H và ΔBKA vuông tại K có 

BA chung

\(\widehat{ABH}=\widehat{BAK}\)(hai góc ở đáy của ΔOAB cân tại O)

Do đó: ΔAHB=ΔBKA(cạnh huyền-góc nhọn)

Suy ra: \(\widehat{HAB}=\widehat{KBA}\)(hai góc tương ứng)

hay \(\widehat{IAB}=\widehat{IBA}\)

Xét ΔIBA có \(\widehat{IAB}=\widehat{IBA}\)(cmt)

nên ΔIBA cân tại I(Định lí đảo của tam giác cân)

Suy ra: IA=IB(hai cạnh bên)

Xét ΔOIA và ΔOIB có 

OI chungIA=IB(cmt)

OA=OB(Gt)

Do đó: ΔOIA=ΔOIB(c-c-c)

Suy ra: \(\widehat{AOI}=\widehat{BOI}\)(hai góc tương ứng)

hay \(\widehat{xOI}=\widehat{yOI}\)

mà tia OI nằm giữa hai tia Ox, Oy

nên OI là tia phân giác của \(\widehat{xOy}\)(đpcm)

9 tháng 11 2022

Thịnh lm sai rùi phải có 3 điều kiện thì câu a mới đúng 

12 tháng 12 2019

a) 

 Xét \(\Delta\)OAC và \(\Delta\)OBC có:

^CAO  = ^CBO ( = 90\(^o\))

OC chung

^AOC = ^BOC ( OC là phân giác ^xOy)

=>  \(\Delta\)OAC = \(\Delta\)OBC ( cạnh huyền - góc nhọn) => OA = OB 

b)  \(\Delta\)OAC =  \(\Delta\)OBC => CA = CB ; ^BCO = ^ACO

Xét  \(\Delta\)IAC và \(\Delta\)I BC có: CA = CB ; ^BCI = ^ACI ( vì ^BCO = ^ACO ) ; CI chung

=> \(\Delta\)IAC = \(\Delta\)IBC  ( c.g.c) (1)

=> IA = IB => I là trung điểm AB  (2)

c)  từ (1) => ^AIC = ^BIC  mà ^AIC + ^BIC = 180\(^o\)

=> ^AIC = ^BIC = \(90^o\)

=> CI vuông góc AB

=> CO vuông goác AB tại I  (3)

Từ (2) ; ( 3) => CO là đường trung trực của đoạn thẳng AD.