Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có cos(,
) = cos1350 =
sin(,
) = sin900 = 1
cos(,
) = cos00 = 1

a) Ta có, theo quy tắc ba điểm của phép trừ:
=
–
(1)
Mặt khác, =
(2)
Từ (1) và (2) suy ra:
=
–
.
b) Ta có : =
–
(1)
=
(2)
Từ (1) và (2) cho ta:
=
–
.
c) Ta có :
–
=
(1)
–
=
(2)
=
(3)
Từ (1), (2), (3) suy ra đpcm.
d) –
+
= (
–
) +
=
+
=
+
( vì
=
) =

a) Gọi theo thứ tự ∆1, ∆2, ∆3 là giá của các vectơ ,
,
cùng phương với
=> ∆1 //∆3 ( hoặc ∆1 = ∆3 ) (1)
cùng phương với
=> ∆2 // ∆3 ( hoặc ∆2 = ∆3 ) (2)
Từ (1), (2) suy ra ∆1 // ∆2 ( hoặc ∆1 = ∆2 ), theo định nghĩa hai vectơ ,
cùng phương.
Vậy
a) đúng.
b) Đúng.

Qua M kẻ các đường thẳng song song với các cạnh của tam giác
A1B1 // AB; A2C2 // AC; B2C1 // BC.
Dễ thấy các tam giác MB1C2; MA1C1;MA2B2 đều là các tam giác đều. Ta lại có MD B1C2 nên MD cũng là trung điểm thuộc cạnh B1C2 của tam giác MB1C2
Ta có 2 =
+
Tương tự: 2 =
+
2 =
+
=> 2( +
+
) = (
+
) + (
+
) + (
+
)
Tứ giác là hình bình hành nên
+
=
Tương tự: +
=
+
=
=> 2( +
+
) =
+
+
vì O là trọng tâm bất kì của tam giác và M là một điểm bất kì nên
+
+
= 3
.
Cuối cùng ta có:
2( +
+
) = 3
;
=> +
+
=

a) Nối BM
Ta có AM= AB.cosMAB
=> || = |
|.cos(
,
)
Ta có: .
= |
|.|
| ( vì hai vectơ
,
cùng phương)
=> .
= |
|.|
|.cosAMB.
nhưng ||.|
|.cos(
,
) =
.
Vậy .
=
.
Với .
=
.
lý luận tương tự.
b) .
=
.
.
=
.
=> .
+
.
=
(
+
)
=> .
+
.
=
= 4R2

Trước hết ta có
= 3
=>
= 3 (
+
)
=> = 3
+ 3
=> – = 3
=> =
mà =
–
nên
=
(
–
)
Theo quy tắc 3 điểm, ta có
=
+
=>
=
+
–
=> = –
+
hay
= –
+

Ta có +
=
=
= a
Ta có: –
=
+
.
Trên tia CB, ta dựng =
=> –
=
+
=
Tam giác EAC vuông tại A và có : AC = a, CE = 2a , suy ra AE = a√3
Vậy =
= a√3

Gọi G là giao điểm của AK, BM thì G là trọng tâm của tam giác.
Ta có =
=>
=
= –
= –
= –
Theo quy tắc 3 điểm đối với tổng vec tơ:
=
+
=>
=
–
=
(
–
).
AK là trung tuyến thuộc cạnh BC nên
+
= 2
=>
–
+
= 2
Từ đây ta có =
+
=>
= –
–
.
BM là trung tuyến thuộc đỉnh B nên
+
= 2
=> –
+
= 2
=> =
+
.

Gọi D là trung điểm của cạnh AB, ta có:
+
= 2
Đẳng thức đã cho trở thành:
2+ 2
=
=> +
=
Đẳng thức này chứng tỏ M là trung điểm của CD
Ta có sin2x + cos2x = 1 => sin2x = 1 – cos2x
Do đó P = 3sin2x + cos2x = 3(1 – cos2x) + cos2x
=> P = 3 – 2cos2x
Với cosx =
=> cos2x =
=> P= 3 –
= 