Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x y A B C M D E
Giải :a) Ta có BD // Ay (gt)
=> góc DBM = góc A (so le trong)
mà góc A = 900 => góc BDM = 900
Xét tam giác AMC và tam giác BMD
có góc A = góc DBM = 900 (cmt)
MA = MB(gt)
góc AMC = góc BMD ( đối đỉnh)
=> tam giác AMC = tam giác BMD (g.c.g)
b) Ta có : tam giác AMC = tam giác BMD (cm câu a)
=> MC = MD ( hai cạnh tương ứng)
Xét tam giác MEC và tam giác MED
có MC = MD (cmt)
CME = DME (gt)
ME : chung
=> tam giác MEC = tam giác MED (c.g.c)
=> góc CEM = góc DEM (hai góc tương ứng)
Mà tia EM nằm giữa ED và EC
=> EM là tia p/giác của góc DEC (Đpcm)
c) Ta có : tam giác AMC = tam giác BMD (cm câu a)
=> BD = AC ( hai cạnh tương ứng)
Mà DE = BD + BE
hay AC + BE = DE
=> BE = DE - AC (1)
Ta lại có tam giác MEC = tam giác MED (cm câu b)
=> EC = ED (hai cạnh tương ứng) (2)
Từ (1) và (2) suy ra BE = CE - AC (Đpcm)
a, xét hai tam giác ABM và ACM có AB=AC, MB=MC, AM chung \(\Rightarrow\) ABM=ACM (c.c.c)
b, AB=AC nên ABC là tam giác cân, M là trung điểm BC nên AM vuông góc với BC
c,xét 2 tam giác AEH và CEM có EA=EC, EM=EH, góc MEC= góc HEA nên hai tam giác đó bằng nhau (c.g.c)
d, theo câu c đã có tam giác AEH=CEM nên góc AHE= góc CME. Hai góc này ở vị trí so le nên AH // BC (1)
tiếp tục xét 2 tam giác DKA và DMB, có góc KDA=DBM, DK = DM. Mặt khác ta thấy DMEA là hinhf bình hành nên ME=AD=DB ( do ME cũng là đường trung bình của ABC)
nên suy ra tam giác DKA=DMB suy ra góc AKD=BMD, hai góc này ở vị trí so le nên AK// BC(2)
Từ 1 và 2 suy ra AH và AK cùng nằm trên 1 đường thẳng hay K,H,A thẳng hàng...
a )
Xét tam giác ABM và tam giác ACM có:
BM = MC ( vì M là trung điểm của BC )
AM là cạnh chung
AB = AC ( gt )
=> tam giác ABM = tam giác ACM ( c.c.c )
b) Xét tam giác AEH và tam giác CEM có:
EH = EM (gt)
góc AEM = góc MEC (2 góc đối đỉnh )
AE = EC ( vì E là trung điểm của AC )
=> tam giác AEK = tam giác CEM (c.g.c)
c) Câu này giải thích nhiều mà tớ không có thời gian nên không ghi ra được. Tích hay không tùy cậu