Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: OD = OB + BD
OC=OA+AC
mà OA=OB; AC=BD
=>OD=OC
Xét 2 TG ODA và OCB;ta có:
OA-OB(gt); O:góc chung; OD=OC(cmt)
=>TG ODA= TG OCB(c.g.c)
=>AD=BC(2 cạnh tương ứng)
b. TG ODA=TG OCB=> góc C=góc D(2 góc tương ứng)
=>OAD=OBC(2 góc tương ứng)
Ta có: OAD+EAC=180
OBC+EBD=180
Từ (1) và (2)=> OAD+EAC=OBC+EBD=180
mà OAD=OBC(cmt)=>EAC=EBD
Xét 2 TG EAC và EBD; ta có:
AC=BD(gt); C=D(cmt); EAC=EBD(cmt)
=>TG EAC=TG EBD (g.c.g)
c. Vì TG EAC=TG EBD=> EA=EB(2 cạnh tương ứng)
Xét TG OBE và OAE, ta có:
OA=OB(gt); EA=EB(cmt); OE:cạnh chung
=>TG OBE=TG OAE(c.c.c)
=>BOE=EOA(2 cạnh tương ứng)
mà OE nằm giữa OA và OB=> OE là phân giác của góc xOy
Không pt đúng ko
vẽ thêm tia OE hộ tớ với
c) VÌ \(\Delta AEC=\Delta EBD\left(CMT\right)\)
\(\Rightarrow AE=EB\)
XÉT \(\Delta OEB\)VÀ\(\Delta OEA\)CÓ
\(OB=OA\left(GT\right)\)
\(\widehat{B_1}=\widehat{A_1}\left(CMT\right)\)
\(AE=EB\left(CMT\right)\)
=>\(\Delta OEB\)=\(\Delta OEA\)(C-G-C)
=>\(\widehat{BOE}=\widehat{AEO}\)
=> OE LÀ TIA PHÂN GIÁC CỦA \(\widehat{xOy}\)
Tham khảo nha.
Câu hỏi của nguyen van duy - Toán lớp 7 - Học toán với OnlineMath
Hình vẽ trên òn đây là bài làm:
a) Ta có: OC=OA+AC
OD=OB+BD
Mà OA=OB và AC=BD (gt)
=>OC=OD
Xét Δ OAD và Δ OBC có:
OA=OB (gt)
\(\widehat{O}\) góc chung
OC=OD (cmt)
=> Δ OAD=Δ OBC (c.g.c)
=> AD=BC (2 cạnh tương ứng)
Δ OAD=Δ OBC (cmt)
=> \(\widehat{D}=\widehat{C}\) và \(\widehat{A_1}=\widehat{B_1}\) (2 góc tương ứng)
Mà \(\widehat{A_1}+\widehat{A_2}=\widehat{B_1}+\widehat{B_2}\)= 1800 (kề bù)
=> \(\widehat{A_2}=\widehat{B_2}\)
Δ EAC và Δ EBD có:
\(\widehat{C}=\widehat{D}\) (cmt)
AC=BD (gt)
\(\widehat{A_2}=\widehat{B_2}\) (cmt)
=> Δ EAC= ΔEBD (g.c.g)
c) Δ EAC=ΔEBD (cmt)
=> EA=EB (2 cạnh tương ứng)
ΔOBE và Δ OAE có:
OB=OA (gt)
\(\widehat{B_1}=\widehat{A_1}\) (cmt)
EA=EB (cmt)
=>Δ OBE=Δ OAE (c.g.c)
=> \(\widehat{O_1}=\widehat{O_2}\) (2 góc tương ứng)
Vậy OE là phân giác \(\widehat{xOy}\).
Hình tự vẽ nha
a)Có: OC=OA+AC
OD=OB+BD
Mà : OA=OA(gt); AC=BD(gt)
=> OC=OD
Xét ΔOBC và ΔOAD có:
OC=OD(cmt)
\(\widehat{O}\) chung
OB=OA(gt)
=> ΔOBC=ΔOAD(c.g.c)
=> BC=AD
b)Vì: ΔOBC =ΔOAD(cmt)
\(\Rightarrow\widehat{OCB}=\widehat{ODA},\widehat{OBC}=\widehat{OAD}\)( cặp góc tượng ứng)
Có:\(\widehat{OAD}+\widehat{DAC}=180^o\)
\(\widehat{OBC}+\widehat{CBD}=180^o\)
Mà:\(\widehat{OBC}=\widehat{OAD}\left(cmt\right)\)
\(\Rightarrow\widehat{DAC}=\widehat{CBD}\)
Xét ΔEAC và ΔEBD có
\(\widehat{ECA}=\widehat{EDB}\left(cmt\right)\)
AC=BD(gt)
\(\widehat{EAC}=\widehat{EBD}\left(cmt\right)\)
=> ΔEAC=ΔEBD(g.c.g)
c) Vì: ΔEAC=ΔEBD(cmt)
=> EC=ED
Xét ΔOEC và ΔOED có:
OC=OD(cmt)
\(\widehat{OCE}=\widehat{ODE}\left(cmt\right)\)
EC=ED(cmt)
=> ΔOEC=ΔOED(c.g.c)
\(\Rightarrow\widehat{EOC}=\widehat{EOD}\)
=> OE là tia pg của \(\widehat{xOy}\)
O x y A B C D E
a, Ta có : OD = OB + BD
OC = OA + AC
Mà OA = OB ( gt ) và AC = BD ( gt )
=> OC = OD
Xét tam giác OAD và tam giác OBC
^O chung
OC = OD ( cmt )
OA = OB ( gt )
=> tam giác OAD = tam giác OBC (c.g.c)
=> AD = BC ( 2 cạnh tương ứng )
Vì OAD = OBC ( cmt )
=> ^D = ^C và ^A = ^B ( 2 góc tương ứng )
Mà ^OAD + ^CAD = ^OBC + ^DBC = 1800 ( kề bù )
=> ^DBC = ^CAD
Xét tam giác EAC và tam giác EBD ta có :
^C = ^D ( cmt )
AC = BD ( gt )
^DBC = ^CAD ( cmt )
=> tam giác EAC = tam giác EBD ( g.c.g )
a: Xét ΔOAD và ΔOBC có
OA=OB
góc O chung
OD=OC
Do đó: ΔOAD=ΔOBC
=>AD=BC
b: Xét ΔEAC và ΔEBD có
góc EAC=góc EBD
AC=BD
góc ECA=góc EDB
Do đó: ΔEAC=ΔEBD