K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2016

nhầm ,vẽ hình ra mk cg k lm đc đâu đừng có vẽ nhé

7 tháng 1 2016

Tự vẽ hình nha bạn 

1)

a)xét tam giác AOB và COE có

OA=OC(GT)

OB+OE(GT)
AB=EC(GT)

Suy ra AOB=COE(c.c.c)

b) vì AOB=COE(câu a)

gócOAB=gócOCA(hai góc tương ứng)

 

29 tháng 7 2016

a) Vì tia OB nằn giữa 2 tia Ox và Oy => góc yOB + BOx = 90o

=> BOx = 90o - yOB = 90o - 30o = 60o

Trên nửa mp bờ tia Ox: góc xOA < xOB (30 < 60o)

 => tia OA nằm giữa 2 tia Ox và OB

=> BOA + AOx = BOx

=> góc BOA = BOx - AOx = 60o - 30o = 30o

Vậy BOA = AOx và OA nằm giữa 2 tia OB và Ox => OA là tia p/g của góc xOB

b) Góc xOA + AOy = xOy

=> AOy = xOy - xOA = 90o - 30o = 60o

Oy là p/g của góc AOC => góc AOC = 2 . góc AOy = 120 o

Trên nửa mp bờ tia OA: góc AOB < góc AOC

=> tia OB nằm giữa 2 tia OA và OC

=> AOB + BOC= AOC

=> BOC = AOC - AOB = 120o - 30o = 90o

=> OB vuông góc với OC

a: Xét ΔOAI và ΔOBI có

OA=OB

\(\widehat{AOI}=\widehat{BOI}\)

OI chung

Do đó: ΔOAI=ΔOBI

b: Ta có: ΔOAI=ΔOBI

=>IA=IB

=>I nằm trên đường trung trực của AB(1)

Ta có: OA=OB

=>O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra OI là đường trung trực của BA

=>OI\(\perp\)AB

=>Oz\(\perp\)AB

c: ta có: Oz\(\perp\)AB

AB//CD

Do đó: Oz\(\perp\)CD tại I

Xét ΔOCD có

OI là đường cao

OI là đường phân giác

Do đó;ΔOCD cân tại O

Ta có: ΔOCD cân tại O

mà OI là đường cao

nên I là trung điểm của CD

d: Ta có: OB+BD=OD

OA+AC=OC

mà OB=OA

và OC=OD

nên BD=AC

Xét ΔBDC và ΔACD có

BD=AC

\(\widehat{BDC}=\widehat{ACD}\)(ΔOCD cân tại O)

CD chung

Do đó: ΔBDC=ΔACD

=>\(\widehat{BCD}=\widehat{ADC}\)

=>\(\widehat{MCD}=\widehat{MDC}\)

Xét ΔMCD có \(\widehat{MCD}=\widehat{MDC}\)

nên ΔMCD cân tại M

=>MC=MD

=>M nằm trên đường trung trực của CD(3)

Ta có: ΔOCD cân tại O

mà OI là đường cao

nên OI là đường trung trực của CD(4)

Từ (3) và (4) suy ra O,M,I thẳng hàng

Bài 25: Cho tg ABC có B=C.Tia phân giác của góc A cắt BC tại D. Chứng minh rằng:a) tg ADB = tg ADCb) AB = ACBài 26: Cho góc xOy khác góc bẹt. Ot là phân giác của góc đó. Qua điểm H thuộc tia Ot,kẻ đường vuông góc với Ot, nó cắt Ox và Oy theo thứ tự là A và B.a) Chứng minh rằng OA = OB;b) Lấy điểm C thuộc tia Ot, chứng minh rằng CA = CB và OAC=OBCBài 27. Cho góc nhọn xOy. Trên tia Ox lấy hai điểm A, C. Trên tia Oy...
Đọc tiếp

Bài 25: Cho tg ABC có B=C.Tia phân giác của góc A cắt BC tại D. Chứng minh rằng:
a) tg ADB = tg ADC
b) AB = AC
Bài 26: Cho góc xOy khác góc bẹt. Ot là phân giác của góc đó. Qua điểm H thuộc tia Ot,
kẻ đường vuông góc với Ot, nó cắt Ox và Oy theo thứ tự là A và B.
a) Chứng minh rằng OA = OB;
b) Lấy điểm C thuộc tia Ot, chứng minh rằng CA = CB và OAC=OBC
Bài 27. Cho góc nhọn xOy. Trên tia Ox lấy hai điểm A, C. Trên tia Oy lấy hai điểm B,D
sao cho OA = OB, AC = BD.
a) Chứng minh: AD = BC.
b) Gọi E là giao điểm AD và BC. Chứng minh: tg EAC = tg EBD
c) Chứng minh: OE là phân giác của góc xOy, OE vuông góc CD
Bài 28 : Cho tam giác ABC với AB = AC. Lấy I là trung điểm BC. Trên tia BC lấy
điểm N, trên tia CB lấy điểm M sao cho CN=BM.
a) Chứng minh tg ABI= tg ACI và AI là tia pg của góc BAC
b)Chứng minh AM=AN.
c) Chứng minh AI vuông góc BC.

1
26 tháng 2 2020

1)A) vì \(\Delta ABC\)CÓ \(\widehat{B}=\widehat{C}\)

\(\Rightarrow\Delta ABC\)CÂN TẠI A

\(\Rightarrow AB=AC\)

XÉT \(\Delta ADB\)\(\Delta ADC\)

\(AB=AC\left(CMT\right)\)

\(\widehat{ADB}=\widehat{ADC}\left(GT\right)\)

\(AD\)LÀ CẠNH CHUNG

\(\Rightarrow\Delta ADB=\Delta ADC\left(C-G-C\right)\)

B)VÌ\(\Delta ABC\)CÓ \(\widehat{B}=\widehat{C}\)

\(\Rightarrow\Delta ABC\)CÂN TẠI A

=> AB=AC

Bài 1: Cho tam giác ABC cân (AB=AC), O là giao điểm 3 trung trực 2 cạnh của tam giác ABC (O nằm trong tam giác). Trên tia đối của các tia AB và CA ta lấy 2 điểm M, N sao cho AM=CN. Chứng minh:a) Góc OAB = góc OCAb) Tam giác AOM = tam giác CONc) Hai trung trực OM, ON cắt nhau tại I. Chứng minh OI là tia phân giác của góc MONBài 2: Cho góc nhọn xOy; trên tia Ox lấy 2 điểm A và B (A nằm giữa O, B). Trên Oy lấy 2 điểm C, D (C...
Đọc tiếp

Bài 1: Cho tam giác ABC cân (AB=AC), O là giao điểm 3 trung trực 2 cạnh của tam giác ABC (O nằm trong tam giác). Trên tia đối của các tia AB và CA ta lấy 2 điểm M, N sao cho AM=CN. Chứng minh:
a) Góc OAB = góc OCA
b) Tam giác AOM = tam giác CON
c) Hai trung trực OM, ON cắt nhau tại I. Chứng minh OI là tia phân giác của góc MON
Bài 2: Cho góc nhọn xOy; trên tia Ox lấy 2 điểm A và B (A nằm giữa O, B). Trên Oy lấy 2 điểm C, D (C nằm giữa O, D) sao cho OA=OC và OB=OD. Chứng minh:
a) Tam giác AOD = tam giác COB
b) Tam giác ABD = tam giác CDB
c) Gọi I là giao điểm của AD và BC. Chứng minh IA=IC; IB=ID
Bài 3: Cho tam giác ABC. Qua A kẻ đường thẳng song song với BC, qua C kẻ đường thẳng song song với AB, hai đường thẳng này cắt nhau tại D
a) Chứng minh: AD=BC và AB=DC
b) Gọi M, N lần lượt là trung điểm của BC và AD. Chứng minh: AM=CN
c) Gọi O là giao điểm của AC và BD. Chứng minh: OA=OC và OB=OD
d) Chứng minh: M, O, N thẳng hàng
Bài 4: Cho góc xOy = 60 độ. Vẽ Oz là tia phân giác của góc xOy 
a) Tính góc xOy?
b) Trên Ox lấy điểm A và trên Oy lấy điểm B sao cho OA=OB. Tia Oz cắt AB tại I. Chứng minh tam giác OIA = tam giác OIB
c) Chứng minh OI vuông góc AB
d) Trên tia Oz lấy điểm M. Chứng minh MA=MB
e) Qua M vẽ đường thẳng song song với AB cắt tia Ox, Oy lần lượt tại C và D. Chứng minh BD=AC

       Mọi ng giúp mình giải bài này nhé! Cảm ơn mn <3

7
31 tháng 5 2018

Mình nghĩ khó mà có người giải hết chỗ bài tập đấy của bạn, nhiều quá

31 tháng 5 2018

3/ (Bạn tự vẽ hình giùm)

a/ \(\Delta ABC\)và \(\Delta ADC\)có:

\(\widehat{BAC}=\widehat{ACD}\)(AB // DC; ở vị trí so le trong)

Cạnh AC chung

\(\widehat{CAD}=\widehat{ACB}\)(AB // DC; ở vị trí so le trong)

=> \(\Delta ABC\)\(\Delta ADC\)(g. c. g)

=> AD = BC (hai cạnh tương ứng)

và AB = DC (hai cạnh tương ứng)

b/ Ta có AD = BC (cm câu a)

và \(AN=\frac{1}{2}AD\)(N là trung điểm AD)

và \(MC=\frac{1}{2}BC\)(M là trung điểm BC)

=> AN = MC

Chứng minh tương tự, ta cũng có: BM = ND

\(\Delta AMB\)và \(\Delta CND\)có:

BM = ND (cmt)

\(\widehat{ABM}=\widehat{NDC}\)(AB // CD; ở vị trí so le trong)

AB = CD (\(\Delta ABC\)\(\Delta ADC\))

=> \(\Delta AMB\)\(\Delta CND\)(c. g. c)

=> \(\widehat{BAM}=\widehat{NCD}\)(hai góc tương ứng)

và \(\widehat{BAC}=\widehat{ACN}\)(\(\Delta ABC\)\(\Delta ADC\))

=> \(\widehat{BAC}-\widehat{BAM}=\widehat{ACN}-\widehat{NCD}\)

=> \(\widehat{MAC}=\widehat{ACN}\)(1)

Chứng minh tương tự, ta cũng có \(\widehat{AMC}=\widehat{ANC}\)(2)

và AN = MC (cmt) (3)

=> \(\Delta MAC=\Delta NAC\)(g, c. g)

=> AM = CN (hai cạnh tương ứng) (đpcm)

c/ \(\Delta AOB\)và \(\Delta COD\)có:

\(\widehat{BAO}=\widehat{OCD}\)(AB // DC; ở vị trí so le trong)

AB = CD (cm câu a)

\(\widehat{ABO}=\widehat{ODC}\)(AD // BC; ở vị trí so le trong)

=> \(\Delta AOB\)\(\Delta COD\)(g. c. g)

=> OA = OC (hai cạnh tương ứng)

và OB = OD (hai cạnh tương ứng)

d/ \(\Delta ONA\)và \(\Delta MOC\)có:

\(\widehat{AON}=\widehat{MOC}\)(đối đỉnh)

OA = OC (O là trung điểm AC)

\(\widehat{OAN}=\widehat{OCM}\)(AM // NC; ở vị trí so le trong)

=> \(\Delta ONA\)\(\Delta MOC\)(g. c. g)

=> ON = OM (hai cạnh tương ứng)

=> O là trung điểm MN

=> M, O, N thẳng hàng (đpcm)

30 tháng 1 2016

Em mới lớp 6 thui à

30 tháng 1 2016

em cũng mới học lớp 6

###CÁC BẠN CÓ THỂ GIẢI GIÚP MÌNH 1 TRONG 5 BÀI TOÁN NÀY, NẾU BẠN NÀO BIẾT LÀM BÀI NÀO GIẢI GIÚP MÌNH NHANH NHÉ, KHÔNG CẦN VẼ HÌNH, CHỈ CẦN LÀM BƯỚC CHỨNG MINH LÀ ĐƯỢC, THANK YOU!!!!!!!!!!!!!!!!1) Cho góc xOy. Trên tia Ox lấy điểm A và trên tia đối của tia Oy lấy điểm B sao cho OA = OB. Chứng minh rằng AB song song với tia phân giác của góc xOy2) Cho tam giác ABC cân tại A. Trên cạnh BA lấy điểm D, sao cho...
Đọc tiếp

###CÁC BẠN CÓ THỂ GIẢI GIÚP MÌNH 1 TRONG 5 BÀI TOÁN NÀY, NẾU BẠN NÀO BIẾT LÀM BÀI NÀO GIẢI GIÚP MÌNH NHANH NHÉ, KHÔNG CẦN VẼ HÌNH, CHỈ CẦN LÀM BƯỚC CHỨNG MINH LÀ ĐƯỢC, THANK YOU!!!!!!!!!!!!!!!!

1) Cho góc xOy. Trên tia Ox lấy điểm A và trên tia đối của tia Oy lấy điểm B sao cho OA = OB. Chứng minh rằng AB song song với tia phân giác của góc xOy

2) Cho tam giác ABC cân tại A. Trên cạnh BA lấy điểm D, sao cho A là trung điểm của BD. Chứng minh rằng:

      - Góc BCD = góc ABC + góc ADC

      - Góc BCD = 90 độ

3) Cho tam giác ABC. Vẽ các tam giác đều ABD và ACE ra phía ngoài tam giác ABC. Nối BE và CD. Gọi M và N là trung điểm của BE và CD. Chứng minh tam giác AMN đều

4) Cho tam giác ABC cân, AB là cạnh đấy, góc C = 100 độ. Trên nửa mặt phẳng chứa điểm C, bờ là đường thẳng AB, dựng tia Ax tạo với AB một góc 30 độ và tia By tạo với BA một góc 20 độ. Hai tia Ax và By cắt nhau tại D. Tính góc ACD

5) Cho tam giác ABC cân tại A có góc A < 90 độ, kẻ BD vuông góc với AC. Trên cạnh AB lấy điểm E sao cho AE = AD. Chứng minh rằng:

      - DE song song với BD

      - CE vuông góc với AB

0