\(\sin x=\frac{2}{5}.\)Tính giá rị của biểu thức A=
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có : sin x =3/5 suy ra 5sin x = 3 

25sin2x=9 

25(1-cos2)=9

25cos2=16

5cos x =4

cos x = 4/5 . (1)

Thay (1) và sin x =3/5 vào M , ta được :

M=29/5

23 tháng 9 2018

Ta có:

\(sin^2a+cos^2a=1\Leftrightarrow sin^2a+\left(\frac{1}{3}\right)^2=1\Leftrightarrow sin^2a=\frac{8}{9}\Rightarrow sina=\frac{2\sqrt{2}}{3}.\)

\(B=\frac{sin\alpha-3cosa}{sina+2cosa}=\frac{\frac{2\sqrt{2}}{3}-3.\frac{1}{3}}{\frac{2\sqrt{2}}{3}+2.\frac{1}{3}}=\frac{7-5\sqrt{2}}{2}\)

27 tháng 8 2021

a/ \(A=\frac{cot^2a-cos^2a}{cot^2a}-\frac{sina.cosa}{cota}\)

\(=\frac{\frac{cos^2a}{sin^2a}-cos^2a}{\frac{cos^2a}{sin^2a}}-\frac{sina.cosa}{\frac{cosa}{sina}}\)

\(=\left(1-sin^2a\right)-sin^2a=1\)

27 tháng 8 2021

b/ \(B=\left(cosa-sina\right)^2+\left(cosa+sina\right)^2+cos^4a-sin^4a-2cos^2a\)

\(=cos^2a-2cosa.sina+sin^2a+cos^2a+2cosa.sina+sin^2a+\left(cos^2a+sin^2a\right)\left(cos^2a-sin^2a\right)-2cos^2a\)

\(=2+\left(cos^2a-sin^2a\right)-2cos^2a\)

\(=2-sin^2a-cos^2a=2-1=1\)

30 tháng 11 2019

\(\sin^4\alpha+\cos^4\alpha=\left(\sin^2\alpha+\cos^2\alpha\right)^2-2\sin^2\alpha.\cos^2\alpha=1-2.\frac{1}{4^2}=\frac{7}{8}\)

16 tháng 7 2017

Sửa đề

\(\frac{sin^2x-c\text{os}^2x+c\text{os}^4x}{c\text{os}^2x-sin^2x+sin^4x}=\frac{sin^2x-c\text{os}^2x+\left(1-sin^2x\right)^2}{c\text{os}^2x-sin^2x+\left(1-c\text{os}^2x\right)^2}\)

\(=\frac{-sin^2x-c\text{os}^2x+sin^4x+1}{-c\text{os}^2x-sin^2x+c\text{os}^4x+1}\)

\(=\frac{-1+sin^4x+1}{-1+c\text{os}^4x+1}=\frac{sin^4x}{c\text{os}^4x}=tan^4x\)