Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-Có \(\left|x+1\right|+\left(y-2\right)^2=0\)
-Vì \(\left|x+1\right|\ge0\forall x;\left(y-2\right)^2\ge0\forall y\)
\(\Rightarrow\left|x+1\right|=0\) ; \(\left(y-2\right)^2=0\)
\(\Rightarrow x=-1;y=2\)
-Thay \(x=-1;y=2\) vào \(C=2x^6y-3xy^3-20\) ta được:
\(C=2.\left(-1\right)^6.2-3.\left(-1\right).2^3-20=8\)
tính giá trị biểu thức sau:
M=3 mũ 2/2*5 + 3 mũ 2/5*8 + 3 mũ 2 /8*11 +....+ 3 mũ 2/98*101
Vì \(\left(x+1\right)^{30}+\left(y+2\right)^{50}\ge0\)mà theo đề bài ta có\(\left(x+1\right)^{30}+(y+2)^{50}=0\)
\(\Rightarrow\hept{\begin{cases}\left(x+1\right)^{30}=0\\\left(y+2\right)^{50}=0\end{cases}}\Rightarrow\hept{\begin{cases}x+1=0\\y+2=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=-1\\y=-2\end{cases}}\)
Vậy \(x=-1,y=-2\)
Giá trị của biểu thức \(M=-2x^2.y^3-4xy^2\) tại x=1 và y=2 là:
\(M=-2x^2.y^3-4xy^2=-2.1^2.2^3-4.1.2^2=-32\)
⇒ Chọn B
(x + 20)⁴ + (2y - 1)²⁰²⁴ ≤ 0
⇒ (x + 20)⁴ = 0 và (2y - 1)²⁰²⁴ = 0
*) (x + 20)⁴ = 0
x + 20 = 0
x = 0 - 20
x = -20
*) (2y - 1)²⁰²⁴ = 0
2y - 1 = 0
2y = 1
y = 1/2
M = 5.(-20)².1/2 - 4.(-2).(1/2)²
= 1000 + 2
= 1002
\(\left(x-2\right)^4+\left(2y-1\right)^{2022}< =0\)
mà \(\left(x-2\right)^4+\left(2y-1\right)^{2022}>=0\forall x,y\)
nên \(\left\{{}\begin{matrix}x-2=0\\2y-1=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=2\\y=\dfrac{1}{2}\end{matrix}\right.\)
\(M=11xy^2+4xy^2=15xy^2=15\cdot2\cdot\left(\dfrac{1}{2}\right)^2=\dfrac{15}{2}\)
(x-1)^2+|2y-3|=0
=>x-1=0 và 2y-3=0
=>x=1 và y=1,5
B=4*1^20+5*1^2*1,5-6*1,5+2
=4+7,5-9+2
=4,5