K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2017

\(\Rightarrow\)(x + 1) . (x - 2)\(⋮\)(x + 6)

\(\Rightarrow\)(x + 1) . (x -2)\(⋮\)x + 6

(x - 2) . (x+1) \(⋮\)x+ 6

(x - 2) . (x + 6 - 5)\(⋮\)x+ 6

x + 6 \(⋮\)x + 6

5\(⋮\)x + 6

( x -2 ) \(⋮\)6

6+x\(\in\)Ư (5) = ( 1 , 5) Vì  biểu thức trên dương nên 6 + x cũng dương.

x + 6 = 1                          x + 6 =5

x=-5                                   x=-1

Vậy x\(\in\)(-5, -1)

10 tháng 5 2015

Để A nguyên tức là 6-x phải chia hết cho x-3 .Ta có

        6-x   /x-3

=  6-x+3-3/x-3

= 6-(x-3)-3/x-3

= 6-3-(x-3)/x-3

=  3  -(x-3)/x-3

Để 3-(x-3)chia het cho x-3 thì cả số bị trừ và số trừ đều phải chia hết cho x-3

Mà x-3 chia hết cho x-3 nên 3 cũng phải chia hết cho x-3

=>x-3 là ước cua 3

Ta có Ư3=(-1;-3;1;3)

=>x-3=-1 hoặc =-3 hoặc =1 hoặc= 3

Nếu x-3=-1 vậy x=-1+3=2

        x-3=-3 vậy x=-3+3=0

       x-3=1 vậy x=1+3=4

        x-3=3 vậy x=3+3=6

8 tháng 5 2016

Ta có: |x-1| + |x-2| = |x-1| + |2-x|

Mà |x-1| + |x-2| \(\ge\) |x-1+x-2| hay |x-1| + |2-x| \(\ge\) |x-1+2-x|

                                         \(\Rightarrow\) |x-1| + |2-x| \(\ge\) 1

Vậy A có GTNN là 1 khi x \(\in\) {1;2}

    

8 tháng 5 2016

\(A=\left|x-1\right|+\left|x-2\right|=\left|x-1\right|+\left|2-x\right|\)

Áp dụng bất đẳng thức : \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\),dấu "=" xảy ra \(\Leftrightarrow ab\ge0\),ta có:

\(A\ge\left|\left(x-1\right)+\left(2-x\right)\right|=\left|x-1+2-x\right|=\left|1\right|=1\)

\(\Rightarrow A_{min}=1\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(x-1\right)\left(2-x\right)\ge0\Leftrightarrow1\le x\le2\)

7 tháng 3 2020

Đề bài có sai không bạn?

7 tháng 3 2020

de bai sai hay sao ay

13 tháng 4 2018

Để \(\frac{3n-1}{n-1}\)là số nguyên thì 3n-1 chia hết cho n-1 nên \(\frac{3n-1}{n-1}=\frac{2n+n-1}{n-1}=\frac{2n+\left(n-1\right)}{n-1}\Rightarrow2n⋮n-1\)nhưng \(n-1⋮n-1\Rightarrow2n⋮n-1\)\(\Rightarrow2⋮n-1,n⋮n-1\Rightarrow n-1\in\left\{1;-1;2;-2\right\}\)mà \(n\ne1\left(n-1=1-1=0\right)\)\(\Rightarrow n\in\left\{-1;2;-2\right\}\)