Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(x=x^2-3x-5\)
\(\Leftrightarrow x-x^2+3x=-5\)
\(\Leftrightarrow-x^2+4x=-5\)
\(\Rightarrow x=5\)Vậy \(k=5\)
f(k)=k
<=> k2-3k-5=k
<=> k2-3k-5-k=0
<=> k2-4k-5=0
<=> k2-4k-4-1=0
<=> (k-2)2=1
<=> k-2=1 hoặc k-2=-1
<=> k=3 hoặc k=1
1/ B chia đa thức f(x) cho g(x) như bình thường, dư 3
Để chia hết, số dư phải bằng 0
hay x- 2 thuộc ước của 3 bằng \(\pm1,\pm3\)
Ta có bảng gt:
.....
Vậy..........
P/s: hình như sai tí đấy bạn, đa thức ở dưới phải là \(g\left(x\right)=x^2-x-2\)
Ta có: \(x^2-x-2=\left(x-2\right)\left(x+1\right)\)
Như vậy nếu f(x)chia hết cho \(x^2-x-2,\)thì cũng chia hết cho (x-2)(x+1) . Áp dụng định lí Bezout và định nghĩa phép chia hết, ta thay x=-1 vào \(f\left(x\right):f\left(-1\right)=1+19+21-1+k=0\Rightarrow k=-30\)
Bổ sung cách 1 cho Khả Tâm
Lấy \(\frac{f(x)}{g(x)}\)để tìm số dư và đạt số dư bằng 0 để tìm k.
Ta có : \(x^4-9x^3+21x^2+x+k=\left[x^2-x-2\right]\left[x^2-8x+15\right]+k+30\)
\(f(x)⋮g(x)\)thì cần và đủ là : \(r(x)=k+30=0\Rightarrow k=-30\)
=>k^3+3k^2-k^2+9+6 chia hết cho k+3
=>\(k+3\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
hay \(k\in\left\{-2;-4;-1;-5;0;-6;3;-9\right\}\)
ta có
\(f\left(x\right)=x^2-3x-5=x\Leftrightarrow x^2-4x+4=9\)\(\Leftrightarrow\left(x-2\right)^2=3^2\)\(\Leftrightarrow\orbr{\begin{cases}x-2=3\\x-2=-3\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=5\\x=-1\end{cases}}\)
Vậy x=... thì f(k)=k