Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f'\left(x\right)=3x^2-4x\)
\(f'\left(x\right)>0\Leftrightarrow3x^2-4x>0\Rightarrow\left[{}\begin{matrix}x>\dfrac{4}{3}\\x< 0\end{matrix}\right.\)
\(f'\left(2\right)=4\) ; \(f\left(2\right)=0\)
Phương trình tiếp tuyến:
\(y=4\left(x-2\right)+0\Leftrightarrow y=4x-8\)
\(y'=x^2-4x+3\)
a/ Tiếp tuyến vuông góc với \(y=x+2\Rightarrow\) tiếp tuyến có hệ số góc k=-1
\(\Rightarrow x_0^2-4x_0+3=-1\)
\(\Leftrightarrow x_0^2-4x_0+4=0\Rightarrow x_0=2\)
\(\Rightarrow y\left(0\right)=\frac{5}{3}\)
Pt tiếp tuyến: \(y=-1\left(x-2\right)+\frac{5}{3}\Leftrightarrow y=-x+\frac{11}{3}\)
b/ Tiếp tuyến song song \(y=3x+2020\Rightarrow\) có hệ số góc \(k=3\)
\(\Leftrightarrow x_0^2-4x_0+3=3\Rightarrow\left[{}\begin{matrix}x_0=0\Rightarrow y_0=1\\x_0=4\Rightarrow y_0=\frac{7}{3}\end{matrix}\right.\)
Có 2 tiếp tuyến thỏa mãn: \(\left[{}\begin{matrix}y=3x+1\\y=3\left(x-4\right)+\frac{7}{3}\end{matrix}\right.\)
\(y=\frac{2x+3}{x-2}\Rightarrow y'=\frac{-7}{\left(x-2\right)^2}\)
Tiếp tuyến song song với d nên có hệ số góc \(k=-\frac{1}{7}\)
\(\Rightarrow\frac{-7}{\left(x_0-2\right)^2}=-\frac{1}{7}\Rightarrow\left(x_0-2\right)^2=49\)
\(\Rightarrow\left[{}\begin{matrix}x_0=9\Rightarrow y_0=3\\x_0=-5\Rightarrow y_0=1\end{matrix}\right.\)
Có 2 tiếp tuyến thỏa mãn: \(\left[{}\begin{matrix}y=-\frac{1}{7}\left(x-9\right)+3\\y=-\frac{1}{7}\left(x+5\right)+1\end{matrix}\right.\)
Cứ mỗi lần anh Lâm onl là ông đăng bài hỏi với tốc độ bàn thờ :v
a/ Hoành độ giao điểm của (C) với trục tung là \(x_0=0\)
\(y'=x^2-2x+2\)
\(\Rightarrow pttt:y-y_0=y'\left(x-x_0\right)\Leftrightarrow y=1+2x\)
b/ \(y'=x^2-2x+2\)
Goi \(M\left(x_0;y_0\right)\) la tiep diem \(\Rightarrow k=y'=x_0^2-2x_0+2\)
Vi tiep tuyen vuong goc voi \(y=-\dfrac{1}{5}x+2\)
\(\Rightarrow k.k'=-1\Leftrightarrow\left(x_0^2-2x_0+2\right).\left(-\dfrac{1}{5}\right)=-1\Leftrightarrow x_0^2-2x_0+2=5\)
\(\Leftrightarrow\left[{}\begin{matrix}x_0=3\\x_0=-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}y_0=\dfrac{3^3}{3}-3^2+2.3+1=7\\y_0=-\dfrac{1}{3}-1-2+1=-\dfrac{7}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}y=7+5\left(x-3\right)\\y=-\dfrac{7}{3}+5\left(x+1\right)\end{matrix}\right.\)
P/s: Check lại số hộ mình ạ!
\(y=\dfrac{x-1}{x+1}\Rightarrow y'=\dfrac{2}{\left(x+1\right)^2}>0\)
Do OAB vuông cân \(\Rightarrow AB\) tạo với trục hoành 1 góc 45 độ hoặc 135 độ
\(\Rightarrow\) Hệ số góc đường thẳng thỏa mãn: \(\left[{}\begin{matrix}k=tan45^0=1\\k=tan135^0=-1< 0\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow\dfrac{2}{\left(x+1\right)^2}=1\Rightarrow\left[{}\begin{matrix}x=-1-\sqrt{2}\Rightarrow y=1+\sqrt{2}\\x=-1+\sqrt{2}\Rightarrow y=1-\sqrt{2}\end{matrix}\right.\)
Phương trình tiếp tuyến:
\(\left[{}\begin{matrix}y=1\left(x+1+\sqrt{2}\right)+1+\sqrt{2}\\y=1\left(x+1-\sqrt{2}\right)+1-\sqrt{2}\end{matrix}\right.\)