Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
*) f(1) = 1^100 + 1^99 + ...+ 1 + 1
= 1+ 1 + 1 + ...+ 1 + 1 (101 số 1)
= 101
tương tự:
*) f(-1) = -1 - 1 - 1 ... - 1 - 1 + 1 (100 chữ số 1)
= -100 + 1 = -99
*) đặt f(2) = 2^100 + 2^99 + ...+ 2^2 + 2 + 1 = A
=> 2A = 2^101 + 2^100 + ... + 2^3 + 2^2 + 2
=> 2A - A = 2^101 + 2^100 + ... + 2^3 + 2^2 + 2 - ( 2^100 + 2^99 + ...+ 2^2 + 2 + 1)
<=> A = 2^101 - 1
=> f(2) = 2^101 - 1
tương tự:
*) đặt f(-2) = -2^100 - 2^99 ...- 2^2 - 2 - 1 = B
=> 2B = -2^101 - 2^100 ... - 2^3 - 2^2 - 2
=> 2B -B = -2^101 - 2^100 ... - 2^3 - 2^2 - 2 - ( -2^100 - 2^99 ...- 2^2 - 2 - 1)
<=> B = -2^101 + 1
=> f(-2) = -2^101 + 1
g(1) = 1 + 1^3 + 1^5 + ... + 1^101 (51 số 1)
= 51
g(-1) = -1 - 1^3 - 1^5.... - 1^101 (51 số 1)
= -51
đặt g(3) = 3 + 3^3 + 3^5 + ...+ 3^101 = A
=> 3^2 * A = 3^3 + 3^5 + ....+ 3^103
=> 9A - A = 3^3 + 3^5 + ....+ 3^103 - (3 + 3^3 + 3^5 + ...+ 3^101)
=> 8A = -3 + 3^103
=> A = \(\dfrac{3^{103}-3}{8}\)
=> g(3) = \(\dfrac{3^{103}-3}{8}\)
\(f\left(x\right)-g\left(x\right)=1+x+x^2+x^3+...+x^{100}-\left(x^2+x^4+...+x^{100}\right)\)
\(=1+x+x^3+x^5+...+x^{99}\)
Thay x=-1 vào f(x)-g(x) ta có:
\(f\left(x\right)-g\left(x\right)=1+\left(-1\right)+\left(-1\right)^3+\left(-1\right)^5+...+\left(-1\right)^{99}\)
\(=1-1-1-...-1=-1-1-...-1\left(49cs\right)\)
\(=-1.49=-49\)
\(f\left(x\right)-g\left(x\right)=\left(1+x+x^2+x^3+...+x^{100}\right)-\left(x^2+x^4+x^6+...+x^{100}\right)\)
\(=1+x+x^2+...+x^{100}-x^2-x^4-...-x^{100}\)
\(=1+x+x^3+x^5+...+x^{99}\)
Thay x = -1 vào f(x) - g(x) ta được:
\(1+\left(-1\right)+\left(-1\right)^3+...+\left(-1\right)^{99}\)
\(=1-1-...-1\) ( 51 c/s 1 )
\(=-50\)
Bài 2:
x=100 nên x+1=101
\(f\left(x\right)=x^8-x^7\left(x+1\right)+x^6\left(x+1\right)-x^5\left(x+1\right)\)
\(=x^8-x^8-x^7+x^7+x^6-x^6-x^5\)
\(=-x^5=-100^5\)
Bài 1:
\(f\left(x\right)+g\left(x\right)=6x^4-3x^2-5\)
\(f\left(x\right)-g\left(x\right)=4x^4-6x^3+7x^2+8x-9\)
Do đó: \(2\cdot f\left(x\right)=10x^4-6x^3+4x^2+8x-14\)
=>\(f\left(x\right)=5x^4-3x^3+2x^2+4x-7\)
\(g\left(x\right)=5x^4-3x^3+2x^2+4x-7-4x^4+6x^3-7x^2-8x+9\)
\(=x^4+3x^3-5x^2-4x+2\)
1) f(x)=1008 - (100+1)*1007 + (100+1)*1006 - .........- (100+1)100+125
=1008 - 1008 - 1007+1007 + 1006 - ......-1002 - 100+125
=25
Có:
\(f\left(x\right)=1+x^2+x^4+x^6+...+x^{100}\)
Ta có từng trường hợp:
TH1:
\(f\left(0\right)=1+0^2+0^3+0^4+0^6+...+0^{100}\)
\(=1+0+0+0+0+...+0=1\)
TH2:
\(f\left(1\right)=1+1^2+1^4+1^6+...+1^{10}\)
\(=1+1+1+1+...+1\) (Có 51 chữ số 1)
\(=51\)
TH2:
\(f\left(-1\right)=1+\left(-1\right)^2+\left(-1\right)^4+\left(-1\right)^6+...+\left(-1\right)^{100}\)
\(=1+1+1+1+...+1\) (Có 51 chữ số 1)
= 51
Chúc bạn học tốt!