Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét hiệu :
\(\left(\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\right)-\left(\frac{y^2}{x+y}+\frac{z^2}{y+z}+\frac{x^2}{z+x}\right)\)
\(=\frac{x^2-y^2}{x+y}+\frac{y^2-z^2}{y+z}+\frac{z^2-x^2}{z+x}\)
\(=\frac{\left(x+y\right)\left(x-y\right)}{x+y}+\frac{\left(y+z\right)\left(y-z\right)}{y+z}+\frac{\left(z+x\right)\left(z-x\right)}{z+x}\)
\(=x-y+y-z+z-x=0\)
Vậy \(\left(\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\right)=\left(\frac{y^2}{x+y}+\frac{z^2}{y+z}+\frac{x^2}{z+x}\right)\)
hay \(\left(\frac{y^2}{x+y}+\frac{z^2}{y+z}+\frac{x^2}{z+x}\right)=2009\)
Đặt \(A=\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}=2009,B=\frac{y^2}{x+y}+\frac{z^2}{y+z}+\frac{z^2}{x+z}\)
\(=>A-B=\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{x^2}{z+x}-\frac{y^2}{x+y}-\frac{z^2}{y+z}+\frac{x^2}{z+x}\)
\(=>2009-B=\frac{x^2-y^2}{x+y}+\frac{y^2-z^2}{y-z}+\frac{z^2-x^2}{z-x}\)
\(=>2009-B=\frac{\left(x-y\right).\left(x+y\right)}{x+y}+\frac{\left(y-z\right).\left(y+z\right)}{y+z}+\frac{\left(z-x\right).\left(z+x\right)}{z+x}\)
=>2009-B=x-y+y-x+z-x
=>2009-B=(x-x)+(y-y)+(z-z)
=>2009-B=0+0+0
=>2009-B=0
=>B=2009
Vậy \(\frac{x^2}{x+y}+\frac{z^2}{y+z}+\frac{x^2}{z+x}=2009\)
ta thấy \(\left(x^2+\frac{1}{x^2}\right)\left(x^2-\frac{1}{x^2}\right)=\left(x^4-\frac{1}{x^4}\right)\)
\(\left(x^2+\frac{1}{x^2}\right)\left(x^2+\frac{1}{x^2}\right)=\left(x^4+\frac{1}{x^4}\right)+2\)
suy ra \(y=\frac{\left(x^4+\frac{1}{x^4}\right)+2}{\left(x^4-\frac{1}{x^4}\right)}\)
<=> \(y=z+\frac{2}{\left(x^4-\frac{1}{x^4}\right)}\)
<=>\(z=\frac{2}{\left(x^4-\frac{1}{x^4}\right)}-y\)
\(P=\frac{1}{x^2+y^2+z^2}+\frac{2009}{xy+yz+zx}=\frac{1}{x^2+y^2+z^2}+\frac{1}{xy+yz+zx}+\frac{1}{xy+yz+zx}+\frac{2007}{xy+yz+zx}\)
\(P\ge\frac{9}{x^2+y^2+z^2+2xy+2yz+2zx}+\frac{2007}{\frac{1}{3}\left(x+y+z\right)^2}\)
\(P\ge\frac{9}{\left(x+y+z\right)^2}+\frac{6021}{\left(x+y+z\right)^2}=\frac{6030}{\left(x+y+z\right)^2}\ge\frac{6030}{3^2}=670\)
Dấu "=" xảy ra khi \(x=y=z=1\)
Áp dụng BĐT Côsi dưới dạng engel, ta có:
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{\left(1+1+1\right)^2}{x+y+z}=\frac{9}{x+y+z}\)
⇒\(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left(x+y+z\right)\ge\left(x+y+z\right).\frac{9}{x+y+z}\) = 9
Dấu "=" xảy ra ⇔ x = y = z
\(\frac{y}{y^2-y+1}=2009\Rightarrow\frac{y^2-y+1}{y}=\frac{1}{2009}\)
\(\Rightarrow y-1+\frac{1}{y}=\frac{1}{2009}\)
\(\Rightarrow y+\frac{1}{y}=\frac{2010}{2009}\)
\(\frac{y^4+y^2+1}{y^2}=y^2+1+\frac{1}{y^2}\)
\(=y^2+2+\frac{1}{y^2}-1\)
\(=\left(y+\frac{1}{y}\right)^2-1\)
Thay vào \(y+\frac{1}{y}=\frac{2010}{2009}\)ta được
\(\left(\frac{2010}{2009}\right)^2-1\)
\(=\frac{2010^2}{2009^2}-\frac{2009^2}{2009^2}=\frac{\left(2010-2009\right)\left(2010+2009\right)}{2009^2}\)
\(=\frac{4019}{2009^2}\)
:33333
\(\frac{y}{y^2-y+1}=2009\Rightarrow\frac{y^2-y+1}{y}=\frac{1}{2009}\Rightarrow\frac{y^2+y+1}{y}=\frac{4019}{2019}\)
\(\frac{y^2-y+1}{y}.\frac{y^2+y+1}{y}=\frac{y^4+y^2+1}{y^2}=\frac{4019}{2009^2}\)