Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét BĐT sau với a,b >0 : \(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{ab}{ba}}=2\) \(\). Dấu "=" xảy ra khi a=b
Ta có : \(x^2+y^2+z^2+\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)
= \(\left(x^2+\frac{1}{x^2}\right)+\left(y^2+\frac{1}{y^2}\right)+\left(z^2+\frac{1}{z^2}\right)\) (1)
Áp dụng BĐT vừa c.m , ta suy ra :
\(\hept{\begin{cases}x^2+\frac{1}{x^2}\ge2\\y^2+\frac{1}{y^2}\ge2\\z^2+\frac{1}{z^2}\ge2\end{cases}}\) . Dấu "=" xảy ra khi x=y=z=1 (2)
Từ (1) và (2) => \(\left(x^2+\frac{1}{x^2}\right)+\left(y^2+\frac{1}{y^2}\right)+\left(z^2+\frac{1}{z^2}\right)\)\(\ge2+1+2=6\)
Dấu "=" xảy ra khi x=y=z=1
Thay vào B , ta được :
B = 2+3+1 =6
\(\hept{\begin{cases}y=\frac{x^2+\frac{1}{x^2}}{x^2-\frac{1}{x^2}}=\frac{x^4+1}{x^4-1}=a\\z=\frac{x^4+\frac{1}{x^4}}{x^4-\frac{1}{x^4}}=\frac{x^8+1}{x^8-1}\end{cases}}\)
\(\Rightarrow x^4=\frac{y+1}{y-1}\)
Thế vô z được
\(z=\frac{\left(\frac{y+1}{y-1}\right)^2+1}{\left(\frac{y+1}{y-1}\right)-1}=\frac{y^2+1}{2y}\)
Giờ thì thế \(y=\sqrt{2}+\sqrt{3}\)vô đi
Ta có : \(y=\frac{x^2+\frac{1}{x^2}}{x^2-\frac{1}{x^2}}=\frac{x^4+1}{x^4-1}\); \(z=\frac{x^4+\frac{1}{x^4}}{x^4-\frac{1}{x^4}}=\frac{x^8+1}{x^8-1}\)
\(y+\frac{1}{y}=\frac{x^4+1}{x^4-1}+\frac{x^4-1}{x^4+1}=\frac{\left(x^4+1\right)^2+\left(x^4-1\right)^2}{x^8-1}=\frac{2\left(x^8+1\right)}{x^8-1}=2z\)
\(\Rightarrow z=\frac{y+\frac{1}{y}}{2}=\frac{y^2+1}{2y}\)
\(\hept{\begin{cases}x+y+z=2010\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{2010}\end{cases}\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}}\)
\(\Rightarrow\left(\frac{1}{x}+\frac{1}{y}\right)+\left(\frac{1}{z}-\frac{1}{x+y+z}\right)=0\)
\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y+z-z}{z\left(x+y+z\right)}=0\)
\(\Leftrightarrow\left(x+y\right)\left[\frac{1}{xy}+\frac{1}{z\left(x+y+z\right)}\right]=0\)
\(\Leftrightarrow\left(x+y\right)\left[\frac{z\left(x+y+z\right)+xy}{xyz\left(x+y+z\right)}\right]=0\)
\(\Leftrightarrow\left(x+y\right)\left[\frac{zx+zy+z^2+xy}{xyz\left(x+y+z\right)}\right]=0\)
\(\Leftrightarrow\left(x+y\right)\left[\frac{z\left(x+z\right)+y\left(z+x\right)}{xyz\left(x+y+z\right)}\right]=0\)
\(\Leftrightarrow\left(x+y\right)\left[\frac{\left(x+z\right)\left(z+y\right)}{xyz\left(x+y+z\right)}\right]=0\)
\(\Leftrightarrow\frac{\left(x+y\right)\left(x+z\right)\left(z+y\right)}{xyz\left(x+y+z\right)}=0\)
\(\Leftrightarrow\left(x+y\right)\left(x+z\right)\left(z+y\right)=0\)
<=> x+y = 0 hoặc x+z=0 hoặc z+y=0
<=> x = -y hoặc x = -z hoặc z = -y
\(\Rightarrow P=\left(x^{2007}+y^{2007}\right)\left(y^{2009}+z^{2009}\right)\left(z^{2009}+x^{2009}\right)=0\)
6) \(ptx^4+4x^3+6x^2+4x+1=2x^4+2\)
<=> \(x^4-4x^3-6x^2-4x+1=0\)
dễ thẫy x = 0 không là nghiệm chia cả hai vế cho x^2
\(ptx^2-4x-6-\frac{4}{x}+\frac{1}{x^2}=0\)
<=> \(x^2+\frac{1}{x^2}-4\left(x+\frac{1}{x}\right)-6=0\)
Đặt x + 1/x = t pt <=> \(t^2-2-4t-6=0\)
Giải pt ẩn t sau đó tìm x
\(x^2+2x\sqrt{x+\frac{1}{x}}=8x-1\)(đk;x>0)
\(\Leftrightarrow x^2+2\sqrt{x}\cdot\sqrt{x^2+1}=8x-1\)
\(\Leftrightarrow\left(x^2+1\right)+2\sqrt{x}\cdot\sqrt{x^2+1}+x=9x\)
\(\Leftrightarrow\left(\sqrt{x^2+1}+\sqrt{x}\right)^2-9x=0\)
\(\Leftrightarrow\left(\sqrt{x^2+1}+\sqrt{x}+3\sqrt{x}\right)\left(\sqrt{x^2+1}+\sqrt{x}-3\sqrt{x}\right)=0\)
\(\Leftrightarrow\left(\sqrt{x^2+1}+4\sqrt{x}\right)\left(\sqrt{x^2+1}-2\sqrt{x}\right)=0\)
\(\Leftrightarrow\sqrt{x^2+1}-2\sqrt{x}=0\)(vì \(\sqrt{x^2+1}+4\sqrt{x}>0\))
\(\Leftrightarrow x^2-4x+1=0\)
\(\Leftrightarrow\left(x-2+\sqrt{3}\right)\left(x-2-\sqrt{3}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2-\sqrt{3}\\x=2+\sqrt{3}\end{cases}}\)(thõa mãn điều kiện)
\(\sqrt{x-2009}-\sqrt{y-2008}-\sqrt{z-2}=\frac{1}{2}\left(x+y+z\right)\)(đk:x>2009,y>2008,z>2)
\(\Leftrightarrow\left(\sqrt{x-2009}-1\right)^2+\left(\sqrt{x-2008}+1\right)^2+\left(\sqrt{z-2}+1\right)^2+4014=0\)(không thõa mãn)
Lý do có kết quả trên là vì chuyển 1\2 qua vế trái và tách theo hằng đẳng thức
Bài tiếp theo cũng làm tương tự
Giải PT bậc 2 tìm x rồi thay giá trị của x vào biểu thức tính Q