\(\frac{x}{4}\)=\(\frac{y}{3}\) và \...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2016

bn ơi đề là như vầy phải ko bạn \(\frac{x}{4}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}\)

9 tháng 8 2016

Ta có

\(\frac{x}{4}=\frac{y}{3}\Rightarrow\frac{x}{20}=\frac{y}{15}\)

\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{15}=\frac{z}{21}\)

\(\Rightarrow\frac{x}{20}=\frac{y}{15}=\frac{z}{21}\)

Áp dụng tc của dãy tỉ số bằng nhau ta có

\(\frac{x}{20}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{20-15+21}=\frac{78}{26}=3\)

\(\Rightarrow\begin{cases}x=60\\y=45\\z=63\end{cases}\)

7 tháng 12 2018

b, Ta có: xy=109⇒x10=y9xy=109⇒x10=y9

yz=34⇒y3=z4⇒y9=z12yz=34⇒y3=z4⇒y9=z12

⇒x10=y9=z12=x−y+z10−9+12=7813=6⇒x10=y9=z12=x−y+z10−9+12=7813=6

⇒x=6.10=60⇒x=6.10=60

⇒y=6.9=54⇒y=6.9=54

⇒z=6.12=72

7 tháng 12 2018

x/y=10/9 => x/10=y/9 (1)

y/z=3/4=> y/3=z/4=>y/9=z/12(2)

từ (1) (2) => x/10=y/9=z/12

=> x/10=y/9=z/12=(x-y+z)/(10-9+12)=78/13=6(t/c dãy ti số bằng nhau)

=>x=6*10=60

y=6*9=54

z=6*12=72

nếu thấy đung thì k cho mik nha cảm ơn bạn

18 tháng 6 2019

#)Giải :

a) Ta có : \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{15}=\frac{y}{20};\frac{y}{20}=\frac{z}{28}\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)

Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{186}{62}=3\)

\(\hept{\begin{cases}\frac{x}{15}=3\\\frac{y}{20}=3\\\frac{z}{28}=3\end{cases}\Rightarrow\hept{\begin{cases}x=45\\y=60\\z=84\end{cases}}}\)

Vậy x = 45; y = 60; z = 84

b) Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{\left(y+z+1\right)+\left(x+z+2\right)+\left(x+y-3\right)}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)

\(\Rightarrow\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=2\)

\(\Rightarrow\hept{\begin{cases}y+z+1=2x\left(1\right)\\x+z+2=2y\left(2\right)\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x+y-3=2z\left(3\right)\\x+y+z=\frac{1}{2}\left(4\right)\end{cases}}\)

\(\left(+\right)x+y+z=\frac{1}{2}\Rightarrow y+z=\frac{1}{2}-z\)

Thay (1) vào (+) ta được :

\(\frac{1}{2}-x+1=2x\Rightarrow\frac{3}{2}=3x\Rightarrow x=\frac{1}{2}\)

\(\left(+_2\right)x+y+z=\frac{1}{2}\Rightarrow x+z=\frac{1}{2}-y\)

Thay (2) và (+2) ta được :

\(\frac{1}{2}-y+2=2y\Rightarrow\frac{5}{2}=3y\Rightarrow y=\frac{5}{6}\)

\(\left(+_3\right)x+y+z=\frac{1}{2}+\frac{5}{6}+z=\frac{1}{2}\Rightarrow\frac{4}{3}+z=\frac{1}{2}\Rightarrow z=\frac{-5}{6}\)

Vậy \(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{5}{6}\\z=\frac{-5}{6}\end{cases}}\)

18 tháng 6 2019

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)

\(\Rightarrow x=2k;y=3k;z=5k\)

\(\Rightarrow xyz=2k\cdot3k\cdot5k=30k^3\)

Mà \(xyz=810\Rightarrow30k^3=810\)

\(\Rightarrow k^3=27\)

\(\Rightarrow k=3\)

Thay vào tìm x,,z.

12 tháng 7 2016

a, Ta có: \(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}\Rightarrow\frac{x}{4}=\frac{3y}{9}=\frac{4z}{36}\)

\(\Rightarrow\frac{x}{4}=\frac{3y}{9}=\frac{4z}{36}=\frac{x-3y+4z}{4-9+36}=\frac{62}{31}=2\)

\(\Rightarrow x=2.4=8\)

\(\Rightarrow y=2.3=6\)

\(\Rightarrow z=2.9=18\)

b, Ta có: \(\frac{x}{y}=\frac{10}{9}\Rightarrow\frac{x}{10}=\frac{y}{9}\)

\(\frac{y}{z}=\frac{3}{4}\Rightarrow\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{y}{9}=\frac{z}{12}\)

\(\Rightarrow\frac{x}{10}=\frac{y}{9}=\frac{z}{12}=\frac{x-y+z}{10-9+12}=\frac{78}{13}=6\)

\(\Rightarrow x=6.10=60\)

\(\Rightarrow y=6.9=54\)

\(\Rightarrow z=6.12=72\)

c, Ta có: \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\)

\(\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{20}\)

\(\Rightarrow\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\Rightarrow\frac{2x}{18}=\frac{3y}{36}=\frac{z}{20}\)

\(\Rightarrow\frac{2x}{18}=\frac{3y}{36}=\frac{z}{20}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)

\(\Rightarrow x=3.9=27\)

\(\Rightarrow y=3.12=36\)

\(\Rightarrow z=3.20=60\)

12 tháng 7 2016

các bạn giúp mình vs

 

18 tháng 7 2018

\(\frac{x}{y}=\frac{5}{2}\)

\(\Rightarrow\frac{x}{5}=\frac{y}{2}\)

áp dụng t\c của dãy tỉ số bằng nhau ta có :

\(\frac{x}{5}=\frac{y}{2}=\frac{x-y}{5-2}=\frac{15}{3}=5\)

\(\Rightarrow\hept{\begin{cases}x=5\cdot5=25\\y=5\cdot2=10\end{cases}}\)

18 tháng 7 2018

Ta có: x/y=5/2 và x—y=15

==> x/5=y/2 và x—y=15

Áp Dụng tính chất dãy tỉ số bằng nhau, ta có

x/5=y/2= x—y/5–2=15/3=5

Ta được: x=5.5=25

y=5.2=10

b)Ta có:x/9=y/2 và x—3y=18

Áp Dụng tính chất dãy tỉ số bằng nhau, ta có:

x/9=y/2=x/9=3y/6=x—3y/9–6=18/3=6

Ta được: x= 9.6=54

y=2.6=12

c) Ta có: x/7=y/5=z/2 và x—y+z=—40

Áp Dụng dính chất dãy tỉ số bằng nhau, ta có:

x/7=y/5=z/2= x—y+z/7–5+2= —40/ 4=—10

Ta được: x= 7.(—10)=—70

y= 5.(—10)=—50

z= 2.(—10)=—20

13 tháng 11 2016

1    Ta có x -24 = y

Suy ra x - y = 24

               Áp dụng tính chất dãy tỉ số bằng nhau ta có: 

      x/7 = y/3 = x-y/7-3 =24/4=6

suy ra x= 42

           y = 18

13 tháng 11 2016

thank you

26 tháng 7 2017

Áp dụng tính chất của dãy tỉ số bằng nhau, ta  có :

\(\frac{x-1}{3}=\frac{y-2}{4}=\frac{z+7}{5}=\frac{\left(x-1\right)+\left(y-2\right)-\left(z+7\right)}{3+4-5}=\frac{-2}{2}=-1\)

\(\Rightarrow x=-2;y=-2;z=-12\)

26 tháng 7 2017

a)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{x+1}{3}=\frac{y+2}{4}=\frac{z+3}{5}=\frac{x+1+y+2+z+3}{3+4+5}=\frac{24}{12}=2\)

\(\Rightarrow x=5;y=6;z=7\)