\(\frac{n}{n^2-n+1}=a\)    Tính P =\(\frac{n^2}{n^4+n^2+1}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2021

Ta có:

\(\frac{n}{n^2-n+1}=a\)

\(\Rightarrow\frac{n^2-n+1}{n}=\frac{1}{a}\)

\(\Rightarrow n-1+\frac{1}{n}=a\)

\(\Rightarrow n+\frac{1}{n}=a+1\left(1\right)\)

Lại có:

\(P=\frac{n^2}{n^4+n^2+1}\)

\(\Rightarrow\frac{1}{P}=\frac{n^4+n^2+1}{n^2}=n^2+1+\frac{1}{n^2}\)

\(\Rightarrow\frac{1}{P}=\left(n^2+2.n.\frac{1}{n}+\frac{1}{n^2}\right)-2.n.\frac{1}{n}+1\)

\(\Rightarrow\frac{1}{P}=\left(n+\frac{1}{n}\right)^2-2+1=\left(n+\frac{1}{n}\right)^2-1\)

Thay (1) vào \(\frac{1}{P}\), ta được:

\(\frac{1}{P}=\left(a+1\right)^2-1=a^2+2a+1-1=a^2+2a\)

\(\Rightarrow P=\frac{1}{a^2+2a}=\frac{1}{a\left(a+2\right)}\)

Vậy \(P=\frac{1}{a\left(a+2\right)}\)

12 tháng 3 2019

\(\frac{n}{n^2-n+1}=a\Leftrightarrow n=a\left(n^2-n+1\right)\)

\(\Leftrightarrow n^2=a^2\left(n^2-n+1\right)^2\)

\(\Leftrightarrow n^2=a^2\left(n^4+n^2+1-2n^3+2n^2-2n\right)\)

\(\Leftrightarrow n^2=a^2\left(n^4+n^2+1\right)-2a^2n\left(n^2-n+1\right)\)

\(\Leftrightarrow n^2=a^2\left(n^4+n^2+1\right)-2an^2\) ( vì \(a\left(n^2-n+1\right)=n\))

\(\Leftrightarrow n^2\left(2a+1\right)=a^2\left(n^4+n^2+1\right)\)

\(\Leftrightarrow\frac{n^2}{n^4+n^2+1}=\frac{a^2}{2a+1}\).

3 tháng 5 2018

\(m^2+n^2+p^2+\frac{1}{m^2}+\frac{1}{n^2}+\frac{1}{p^2}=6\)

\(\Leftrightarrow\left(m^2-2+\frac{1}{m^2}\right)+\left(n^2-2+\frac{1}{n^2}\right)+\left(p^2-2+\frac{1}{p^2}\right)=0\)

\(\Leftrightarrow\left(m-\frac{1}{m}\right)^2+\left(n-\frac{1}{n}\right)^2+\left(p-\frac{1}{p}\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}m=\frac{1}{m}\\n=\frac{1}{n}\\p=\frac{1}{p}\end{cases}}\Rightarrow m=n=p=1\)

3 tháng 5 2018

bạn giải dùm mình bài này nhé Tìm x biết: 2+2+2+23+24+...+22014=2x.  Ai giúp mình giải bài này với

12 tháng 4 2018

Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)với a,b>0 

Ta có: \(\frac{4xy}{z+1}=\frac{4xy}{2z+x+y}\le\frac{xy}{x+z}+\frac{xy}{y+z}\)

Tương tự: \(\frac{4yz}{x+1}\le\frac{yz}{x+y}+\frac{yz}{x+z}\)

                \(\frac{4zx}{y+1}\le\frac{zx}{y+x}+\frac{zx}{y+z}\)

\(\Rightarrow4\left(\frac{xy}{z+1}+\frac{yz}{x+1}+\frac{zx}{y+1}\right)\le\frac{xy}{x+z}+\frac{xy}{y+z}+\frac{yz}{x+y}+\frac{yz}{x+z}+\frac{zx}{y+x}+\frac{zx}{y+z}=x+y+z=1\)

\(\Rightarrow\frac{xy}{z+1}+\frac{yz}{x+1}+\frac{zx}{y+1}\le\frac{1}{4}\)

Dấu "=" xảy ra khi: x=y=z>0

12 tháng 4 2018

Bài 2: 

+) Với y=0 <=> x=0

Ta có: 1-xy= 12 (đúng) 

+) Với \(y\ne0\)

Ta có: \(x^6+xy^5=2x^3y^2\)

\(\Leftrightarrow x^6-2x^3y^2+y^4=y^4-xy^5\)

\(\Leftrightarrow\left(x^3-y^2\right)^2=y^4\left(1-xy\right)\)

\(\Rightarrow1-xy=\left(\frac{x^3-y^2}{y^2}\right)^2\)

19 tháng 2 2017

Ta có : 

\(\frac{1}{n+1}>\frac{1}{n+n}=\frac{1}{2n}\)

\(\frac{1}{n+2}>\frac{1}{n+n}=\frac{1}{2n}\)

\(\frac{1}{n+3}>\frac{1}{n+n}=\frac{1}{2n}\)

......................

\(\frac{1}{n+n}=\frac{1}{n+n}=\frac{1}{2n}\)

Cộng vế với vế ta được :

\(\frac{1}{n+1}+\frac{1}{n+2}+\frac{1}{n+3}+....+\frac{1}{n+n}>\frac{1}{2n}+\frac{1}{2n}+\frac{1}{2n}+....+\frac{1}{2n}\)( có n số \(\frac{1}{2n}\) )

\(\Rightarrow\frac{1}{n+1}+\frac{1}{n+2}+\frac{1}{n+3}+....+\frac{1}{n+n}>\frac{n}{2n}=\frac{1}{2}\) ( đpcm )

12 tháng 3 2019

\(m^2+\frac{1}{m^2}\ge2\sqrt{m^2.\frac{1}{m^2}}=2.\)(BĐT Cauchy)

Tương tự \(n^2+\frac{1}{n^2}\ge2;p^2+\frac{1}{p^2}\ge2.\)

\(\Rightarrow VT\ge6=VP\)

Mà GT, VT=VP=6

=> \(m^2=\frac{1}{m^2},n^2=\frac{1}{n^2},p^2=\frac{1}{p^2}\Leftrightarrow m^4=1,n^4=1,p^4=1\)

=>A=3

12 tháng 3 2019

Cái bđt đầu không phải Cô-si vì Cô-si là cho 2 số dương, cái đó là từ hằng đẳng thức mà ra

Ta có : \(\left(m-\frac{1}{m}\right)^2\ge0\)

\(\Leftrightarrow m^2-2+\frac{1}{m^2}\ge0\)

\(\Leftrightarrow m^2+\frac{1}{m^2}\ge2\)

Mấy cái kia làm giống Witch Rose là đc

7 tháng 12 2018

a., đk y khác cộng trừ 1

N=\(\left(\frac{1}{y-1}+\frac{y}{\left(y^3-1\right)}.\frac{y^2+y+1}{y+1}\right):\frac{1}{\left(y-1\right)\left(y+1\right)}\)

N=\(\left(\frac{1}{y-1}+\frac{y}{\left(y-1\right)\left(y+1\right)}\right).\left(y-1\right)\left(y+1\right)\)

N=\(\frac{y+1+y}{\left(y-1\right)\left(y+1\right)}.\left(y-1\right)\left(y+1\right)\)

N= \(2y+1\)

Vậy N=2y+1 với y khác cộng trừ 1

b, Thay y= \(\frac{1}{2}\) ( t/m đk y khác cộng trừ 1 )vào biểu thức N ta được:

N= \(2.\frac{1}{2}+1=1+1=2\) 

Vậy N=2 với y = 1/2

c, Để N luôn dương thì: 2y+1>0

<=> 2y>-1

<=>y>\(\frac{-1}{2}\)( t/ m đk y khác cộng trừ 1)

Vậy với y>-1/2 thì N luôn dương

7 tháng 12 2018

a, \(N=\left(\frac{1}{y-1}-\frac{y}{1-y^3}.\frac{y^2+y+1}{y+1}\right):\frac{1}{y^2-1}\)

\(N=\left(\frac{1}{y-1}+\frac{y}{y^3-1}.\frac{y^2+y+1}{y+1}\right):\frac{1}{y^2-1}\)

\(N=\left(\frac{1}{y-1}+\frac{y}{\left(y-1\right)\left(y^2+y+1\right)}.\frac{y^2+y+1}{y+1}\right):\frac{1}{y^2-1}\)

\(N=\left(\frac{1}{y-1}+\frac{y}{\left(y-1\right)\left(y+1\right)}\right):\frac{1}{y^2-1}\)

\(N=\left(\frac{y+1}{\left(y-1\right)\left(y+1\right)}+\frac{y}{\left(y-1\right)\left(y+1\right)}\right):\frac{1}{\left(y-1\right)\left(y+1\right)}\)

\(N=\frac{y+1+y}{\left(y-1\right)\left(y+1\right)}:\frac{1}{\left(y-1\right)\left(y+1\right)}\)

\(N=\frac{2y+1}{\left(y-1\right)\left(y+1\right)}.\left(y-1\right)\left(y+1\right)\)

\(N=2y+1\)

b, Tại \(y=\frac{1}{2}\) ta có :

             \(N=2.\frac{1}{2}+1\)

\(\Rightarrow N=1+1=2\)

c, Để N luôn có giá trị dương thì \(y\in N\).

30 tháng 11 2018

x khác 1

\(N=\frac{\left(x+2\right)\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{2\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2x^2+4}{\left(x+1\right)\left(x^2+x+1\right)}\)

\(N=\frac{x^2+2x-x-2-2x^2-2x-2+2x^2+4}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{x^2-x}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\frac{x}{x^2+x+1}\)

Xét hiệu 1/3-N=\(\frac{1}{3}-\frac{x}{x^2+x+1}=\frac{x^2+x+1-3x}{3\left(x^2+x+1\right)}=\frac{x^2-2x+1}{3\left(x^2+x+1\right)}=\frac{\left(x-1\right)^2}{3\left(x^2+x+1\right)}>0\)với mọi x khác 1

=> 1/3 >N

3 tháng 2 2017

a) A = n/3 + n2/2 + n3/6

A = 2n+3n2+n3/6

A = 2n+2n2+n2+n3/6

A = (n+1)(2n+n2)/6

A = n(n+1)(n+2)/6

Vì n(n+1)(n+2) là tích 3 số nguyên liên tiếp nên chia hết cho 2 và 3

Mà (2;3)=1 => n(n+1)(n+2) chia hết cho 6

Hay A thuộc Z (đpcm)

b) B = n4/24 + n3/4 + 11n2/24 + n/4

B = n4+6n3+11n2+6n/24

B = n(n3+6n2+11n+6)/24

B = n(n3+n2+5n2+5n+6n+6)/24

B = n(n+1)(n2+5n+6)/24

B = n(n+1)(n2+2n+3n+6)/24

B = n(n+1)(n+2)(n+3)/24

Vì n(n+1)(n+2)(n+3) là tích 4 số nguyên liên tiếp nên chia hết cho 8 và 3

Mà (8;3)=1 => n(n+1)(n+2)(n+3) chia hết cho 24

Hay B nguyên (đpcm)