Cho \(\frac{m}{n}\)là phân số tối giản...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 2 2015

Vì m;n là phân số tối giản => (m;n)=1 (1)

Giả sử (m;m+n) = d khác 1 => m chia hết cho d và m+n chia hết cho d

=> (m+n) - m chia hết cho d hay n chia hết cho d 

do đó (m;n) = d khác 1 trái với (1) => vô lý 

Vậy (m;m+n) = 1 hay phân số m/(m+n) là phân số tối giản

AH
Akai Haruma
Giáo viên
29 tháng 6 2024

Lời giải:

Gọi $d=ƯCLN(m, m+n)$

$\Rightarrow m\vdots d; m+n\vdots d$

$\Rightarrow (m+n)-m\vdots d$

$\Rightarrow n\vdots d$

Vậy $d=ƯC(m,n)$

Mà $m,n$ là hai số nguyên tố cùng nhau nên $d=1$

$\Rightarrow ƯCLN(m,m+n)=1\Rightarrow \frac{m}{m+n}$ là phân số tối giản.

6 tháng 1 2022

Giả sử (m + n)/n không là phân số tối giản. Đặt Ư CLN(m + n;n) = d (d ≠ 1). Khi đó (m + n) ⋮ d, n ⋮ d => (a + b) - b ⋮ d => a ⋮ d mà n ⋮ d => m/n không tối giản (vô lý) => với mọi d khác 1 m/n không tối giản => d = 1 => (m + n)/n cũng là phân số tối giản. Vậy ta có đpcm.

28 tháng 4 2019

cho d là UCLL của \(\frac{2n+3}{4n+8}\)

=)\(\left(4n+8\right)-\left(2n+3\right)⋮d\)

\(\Rightarrow4n+8-2\left(2n+3\right)⋮d\)

\(\Rightarrow4n+8-4n+6⋮d\)

\(\Rightarrow2⋮d\)\(\Rightarrow2=d\)

Mà 2n+3 là số lẻ =) d=1

Vậy\(\frac{2n+3}{4n+8}\)là phân số tối giản với mọi số TN n

28 tháng 4 2019

Gọi ước chung lớn nhất của \(2n+3\)và \(4n+8\)là d 

\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}}\)\(\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+8⋮d\end{cases}}\)\(\Rightarrow\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}\)

\(\Rightarrow\left(4n+8\right)-\left(4n+6\right)\)\(⋮\)\(d\)

\(\Rightarrow4n+8-4n-6\)\(⋮\)\(d\)

\(\Rightarrow2\)\(⋮\)\(d\)

Mà \(2n+3\)không chia hết cho 2 

\(\Rightarrow1\)\(⋮\)\(d\)

\(\Rightarrow\frac{2n+3}{4n+8}\)là phân số tối giản với mọi số tự nhiên n

Gọi ƯCLN ( 2n + 3 ; 4n + 8 ) là d ( \(d\inℕ^∗\))

=> \(\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}}\)=> \(\hept{\begin{cases}2.\left(2n+3\right)⋮d\\4n+8⋮d\end{cases}}\)

=> \(\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}\)

=> \(\left(4n+8\right)-\left(4n+6\right)⋮d\)

      \(4n+8-4n-6⋮d\)

                                  \(2⋮d\)

=> \(d\in\left\{1;2\right\}\)( vì \(d\inℕ^∗\))

    Mà 2n + 3 là số lẻ \(\forall n\inℕ\)

=> d = 1

=> \(\frac{2n+3}{4n+8}\)là phân số tối giản

Vậy \(\frac{2n+3}{4n+8}\)là phân số tối giản

 
16 tháng 4 2019

   Gọi d = ƯC ( 2n + 3 , 4n + 8 ) 

        Xét hiệu : 

                         \(\left(4n+8\right)-\left(2n+3\right)⋮d\)

                          \(4n+8-2\left(2n+3\right)⋮d\)

                           \(4n+8-4n-6⋮d\)

                           \(2⋮d\rightarrow d\inƯ\left(2\right)\)

                           Ư(2) = { 1 , 2 }

     \(d\ne2\)vì \(2n+3⋮̸\)3

      \(\rightarrow d=1\)

                    Vậy...

                                     \(#Hoqchac-Cothanhkhe\)

12 tháng 2 2017

Gợi ý thôi chứ giải ra dài lắm !!

\(\frac{a}{b}\) tối giản khi và chỉ khi UCLN(a;b)=1

2 tháng 7 2016

\(\frac{m}{n}\)tối giản

=> m và n là số nguyên tố . (1)

để \(\frac{m}{n+mn}\)là số nguyên tố thì m và n+mn cũng là số nguyên tố 

Ta có : • Từ (1) chứng tỏ m là số nguyên tố

           • Từ (1) chứng tỏ  m.n là số nguyên tố vì m và n đều là số nguyên tố  (2)

Từ (1) và (2) ta có: 

m và n+mn là số nguyên tố 

=> \(\frac{m}{n+mn}\)là phân số tối giản 

3 tháng 7 2016

cho mình hỏi chỗ (2) ấy m.nà số n.tố vì m và n đều là số n.tố là sao ???

24 tháng 4 2017

HD

phản chứng 

g/s a/(a+b) không tối giản => ước chung (d) của nó khác 1 

hãy c/m d <=1 => dpcm 

4 tháng 2 2022

hahaa