Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
BÀI 2: Áp dụng tc của dãy tỉ số bằng nhau, ta có:
\(\frac{2a+b+c}{a}=\frac{a+2b+c}{b}=\frac{a+b+2c}{c}=\frac{4a+4b+4c}{a+b+c}=4\)
\(\Rightarrow2+\frac{b+c}{a}=2+\frac{a+c}{b}=2+\frac{a+b}{c}=4\)
\(\Rightarrow\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b}{c}=2\)
Vậy N = 6
BÀI 1: Theo đề bài, ta có:
\(ac+c^2=b^2+bd\Rightarrow c\left(a+c\right)=b\left(b+d\right)\Rightarrow c\left(a+c\right)+bc=b\left(b+d\right)+bc\)\(\Rightarrow c\left(a+b+c\right)=b\left(b+c+d\right)\)\(\Rightarrow\frac{a+b+c}{b+c+d}=\frac{b}{c}\Rightarrow\left(\frac{a+b+c}{b+c+d}\right)^3=\left(\frac{b}{c}\right)^3=\frac{b^2b}{c^2c}=\frac{acb}{bdc}=\frac{a}{d}\).
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 2 :
Ta có :
\(\dfrac{2a+b+c}{a}=\dfrac{a+2b+c}{b}=\dfrac{a+b+2c}{c}\)
\(\Rightarrow\dfrac{2a+b+c}{a}-1=\dfrac{a+2b+c}{b}-1=\dfrac{a+b+2c}{c}-1\)\(\Rightarrow\dfrac{a+b+c}{a}=\dfrac{a+b+c}{b}=\dfrac{a+b+c}{c}\)
* Nếu \(a+b+c=0\), Ta suy ra các đẳng thức sau :
\(\left\{{}\begin{matrix}a+b=-c\\b+c=-a\\c+a=-b\end{matrix}\right.\)
Thay các đẳng thức vừa tìm được vào N, ta có :
\(N=\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}\)
\(\Leftrightarrow N=\dfrac{-c}{c}+\dfrac{-a}{a}+\dfrac{-b}{b}\)
\(\Leftrightarrow N=-1+\left(-1\right)+\left(-1\right)=-3\)
* Nếu \(a+b+c\ne0\)
Để \(\dfrac{a+b+c}{a}=\dfrac{a+b+c}{b}=\dfrac{a+b+c}{c}\)
\(\Rightarrow a=b=c\)
\(\left\{{}\begin{matrix}a+b=2c\\b+c=2a\\c+a=2b\end{matrix}\right.\)
Thay các đẳng thức vào N ta có :
\(N=\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}\)
\(\Leftrightarrow N=\dfrac{2c}{c}+\dfrac{2a}{a}+\dfrac{2b}{b}=2+2+2=6\)
Vậy.....
tik mik nha !!!
![](https://rs.olm.vn/images/avt/0.png?1311)
b) a2=ac\(\Rightarrow\) \(\frac{a}{b}=\frac{b}{c}\)
c2=bd\(\Rightarrow\) \(\frac{b}{c}=\frac{c}{d}\)
\(\Rightarrow\)\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\) = \(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}\) = \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)
=\(\frac{a.b.c}{b.c.d}=\frac{a}{d}\)
=> đpcm
![](https://rs.olm.vn/images/avt/0.png?1311)
Giải:
Đặt \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\)
\(\Rightarrow x=ak,y=bk,z=ck\)
Ta có:
\(\left(x+y+z\right)^2=\left(ak+bk+ck\right)^2=\left[k\left(a+b+c\right)\right]^2=\left(k.1\right)^2=k^2\) (1)
\(x^2+y^2+z^2=\left(ak\right)^2+\left(bk\right)^2+\left(ck\right)^2=a^2.k^2+b^2.k^2+c^2.k^2=\left(a^2+b^2+c^2\right).k^2=1.k^2=k^2\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\left(x+y+z\right)^2=x^2+y^2+z^2\left(đpcm\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1) Ta có: \(\frac{a}{b}=\frac{c}{d}\)
\(\Leftrightarrow\frac{a}{c}=\frac{b}{d}\)
\(\Leftrightarrow\frac{a}{c}+1=\frac{b}{d}+1\)
\(\Leftrightarrow\frac{a+c}{c}=\frac{b+d}{d}\)(đpcm)
2) Để \(\frac{2a+3b}{2a-3b}=\frac{2c+3d}{2c-3d}\) thì \(\frac{2a+3b}{2c+3d}=\frac{2a-3b}{2c-3d}\)
\(\Leftrightarrow\frac{2a}{2c}=\frac{3b}{3d}=\frac{2a}{2c}=\frac{3b}{3d}\)
\(\Leftrightarrow\frac{a}{c}=\frac{b}{d}=\frac{a}{c}=\frac{b}{d}\)
\(\Leftrightarrow\frac{a}{c}=\frac{b}{d}\)
hay \(\frac{a}{b}=\frac{c}{d}\)(đpcm)
3) Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
Ta có: \(\frac{ab}{cd}=\frac{bk\cdot b}{dk\cdot d}=\frac{b^2k}{d^2k}=\frac{b^2}{d^2}\)(1)
Ta có: \(\frac{a^2-b^2}{c^2-d^2}\)
\(=\frac{k^2\cdot b^2-b^2}{k^2\cdot d^2-d^2}=\frac{b^2\left(k^2-1\right)}{d^2\left(k^2-1\right)}=\frac{b^2}{d^2}\)(2)
Từ (1) và (2) suy ra \(\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)
4) Ta có: \(\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
nên \(\frac{a^2+b^2}{c^2+d^2}=\frac{b^2\cdot k^2+b^2}{d^2\cdot k^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{b^2}{d^2}\)(3)
Ta có: \(\left(\frac{a+b}{c+d}\right)^2\)
\(=\left(\frac{bk+b}{dk+d}\right)^2\)
\(=\left(\frac{b\left(k+1\right)}{d\left(k+1\right)}\right)^2\)
\(=\left(\frac{b}{d}\right)^2=\frac{b^2}{d^2}\)(4)
Từ (3) và (4) suy ra \(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)
Ta có : \(\frac{a}{c}=\frac{c}{b}\Rightarrow\frac{a^2}{c^2}=\frac{c^2}{b^2}\)
Áp dụng TC của dãy tỉ số bằng nhau , ta có :
\(\frac{a^2}{c^2}=\frac{c^2}{b^2}=\frac{a^2+c^2}{b^2+c^2}=\frac{a}{c}.\frac{a}{c}=\frac{a}{c}.\frac{c}{b}=\frac{a}{b}\)
Vậy .................................