Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{c}=\frac{c}{b}\Rightarrow a=ck;c=bk\left(k\inℕ^∗\right)\)
\(\Rightarrow V1=\frac{a-c}{a+c}=\frac{ck-bk}{ck+bk}=\frac{\left(c-b\right)k}{\left(c+b\right)k}=\frac{c-b}{c+b}=V2\)
\(\Rightarrow V1=V2\left(ĐPCM\right)\)
Chúc bn học tốt
Ta có: \(\frac{a}{c}=\frac{c}{b}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta được :
\(\frac{a}{c}=\frac{c}{b}=\frac{a-c}{c-b}=\frac{a+c}{c+b}\)
\(\implies\) \(\frac{a-c}{c-b}=\frac{a+c}{c+b}\)
\(\implies\) \(\frac{a-c}{a+c}=\frac{c-b}{c+b}\left(đpcm\right)\)
Ta có : \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{2\left(a+b+c\right)}\)
Xét 2 trường hợp :
TH1 : Nếu a + b + c = 0 thì \(\hept{\begin{cases}b+c=-a\\a+b=-c\\a+c=-b\end{cases}}\).Ta có :\(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=-1+-1+-1=-3\). Không phụ thuộc vào giá trị của a ; b ; c
TH2 : Nếu \(a+b+c\ne0\)thì \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{1}{2}\)
\(\Rightarrow\hept{\begin{cases}2a=b+c\\2b=a+c\\2c=a+b\end{cases}}\)
Có : \(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=\frac{2a}{a}+\frac{2b}{b}+\frac{2c}{c}=2+2+2=6\) -Không phụ thuộc vào các giá trị a ; b ; c (2)
Từ (1) và (2)
=> ĐPCM
@Phạm Tuấn Đạt cho 3 số đôi 1 khác 0 =>a+b+c khác 0 => ko cần phải xét
\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
\(\Rightarrow\)\(\hept{\begin{cases}b+c=2a\\a+c=2b\\a+b=2c\end{cases}}\)
\(\Rightarrow\)\(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=\frac{2a}{a}+\frac{2b}{b}+\frac{2c}{c}=2+2+2=6\)
...
Chúc bạn học tốt ~
Cách easy nhất:
Đặt \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=k\Rightarrow a=k\left(b+c\right);b=k\left(a+c\right);c=k\left(a+b\right)\)
Thay vào,ta có:\(\frac{b+c}{a}=\frac{b+c}{k\left(b+c\right)}=\frac{1}{k}\) (1)
Tương tự với hai đẳng thức còn lại,được: \(\frac{a+c}{b}=\frac{1}{k}\) (2)
và \(\frac{a+b}{c}=\frac{1}{k}\) (3)
Từ (1),(2) và (3) ta có: \(\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b}{c}\left(=\frac{1}{k}\right)^{\left(đpcm\right)}\)
\(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)
\(\frac{1}{c}=\frac{1}{2}\left(\frac{a+b}{ab}\right)\)
\(2ab=c\left(a+b\right)\)
\(ab+ab=ca+bc\)
\(ab-cb=ac-ab\)
\(b\left(a-c\right)=a\left(c-b\right)\)
\(\Rightarrow\frac{a}{b}=\frac{a-c}{c-b}\)
Từ \(gt\Leftrightarrow\frac{1}{c}=\frac{1}{2}.\frac{a+b}{ab}\)
\(\Leftrightarrow\frac{1}{c}=\frac{a+b}{2ab}\Leftrightarrow c\left(a+b\right)=2ab\Leftrightarrow ac+bc=ab+ab\)
\(\Leftrightarrow ac-ab=ab-bc\Leftrightarrow a\left(c-b\right)=b\left(a-c\right)\)
\(\Rightarrow\frac{a}{b}=\frac{a-c}{b-c}\) (đpcm)
Từ \(gt\Leftrightarrow\frac{1}{c}=\frac{1}{2}.\frac{a+b}{ab}\)
\(\Leftrightarrow\frac{1}{c}=\frac{a+b}{2ab}\Leftrightarrow c\left(a+b\right)=2ab\Leftrightarrow ac+bc=ab+ab\)
\(\Leftrightarrow ac-ab=ab-bc\Leftrightarrow a\left(c-b\right)=b\left(a-c\right)\)
\(\Rightarrow\frac{a}{b}=\frac{a-c}{b-c}\)
\(\Rightarrowđpcm\)
\(\frac{b+c}{bc}=\frac{2}{a}\) <=> \(\frac{1}{b}+\frac{1}{c}=\frac{2}{a}\)
<=> \(\frac{1}{b}-\frac{1}{a}+\frac{1}{c}-\frac{1}{a}=0\) <=> \(\frac{a-b}{ab}+\frac{a-c}{ac}=0\)
<=> \(\frac{a-b}{ab}=\frac{c-a}{ac}\)
=> \(\frac{ab}{ac}=\frac{a-b}{c-a}\)<=> \(\frac{b}{c}=\frac{a-b}{c-a}\) => Đpcm
Có \(\frac{b+c}{bc}=\frac{2}{a}\)
\(=>2bc=a\left(b+c\right)\)
\(=>bc+bc=ab+ac\)
\(=>bc-ab=ac-bc\)
\(=>b\left(c-a\right)=c\left(a-b\right)\)
\(=>\frac{b}{c}=\frac{a-b}{c-a}\)( đpcm)
Ta có : \(\frac{a}{c}=\frac{c}{b}\)
\(\Rightarrow\frac{a}{c}=\frac{c}{b}=\frac{a-c}{c-b}=\frac{a+c}{c+b}\) ( Theo tính chất của dãy tỉ số bằng nhau )
\(\Rightarrow\frac{a-c}{c-b}=\frac{a+c}{c+b}\)
\(\Rightarrow\frac{a-c}{a+c}=\frac{c-b}{c+b}\)