Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo tính chất dãy tỉ số bằng nhau:
\(x=\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{b+c+c+a+a+b}=\frac{1}{2}\)
ta có: \(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}\)
áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{b+c+c+a+a+b}=\frac{a+b+c}{2.\left(a+b+c\right)}=\frac{1}{2}\)
\(\Rightarrow x=\frac{1}{2}\)
Vậy ...
Tạm thời giải phần a đã nhé -_-
a, Từ a/b = c/d => a/c=b/d
Đặt a/c=b/d=k thì a=ck, b=dk
Xét : 4a-3b/4a+3b=4ck-3dk/4ck+3dk=k.(4c-3d)/k.(4c+3d)=4c-3d/4c+3d
=> 4a-3b/4a+3b=4c-3d/4c+3d => 4a-3b/4c-3d=4a+3b/4c+3d
Nhìn trên máy khó lắm viết lại theo lời giải ra nháp trc' cho dễ nhìn nhé @@
\(a,\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{4a}{4c}=\frac{3b}{3d}=\frac{4a-3b}{4c-3d}\)\(\left(1\right)\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{4a}{4c}=\frac{3b}{3d}=\frac{4a+3b}{4a+3d}\)\(\left(2\right)\)
Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{4a-3b}{4c-3d}=\frac{4a+3b}{4c+3d}\left(đpcm\right)\)
\(b\)Đặt \(\frac{a}{c}=\frac{b}{d}=k\)\(\Rightarrow a=ck;b=dk\)
\(\Rightarrow\frac{a^2-b^2}{c^2-d^2}=\frac{\left(ck\right)^2-\left(dk\right)^2}{c^2-d^2}=\frac{c^2k^2-d^2k^2}{c^2-d^2}=\frac{k^2\left(c^2-d^2\right)}{c^2-d^2}=k^2\)\(\left(3\right)\)
Mà \(\frac{ab}{cd}=\frac{ck.dk}{cd}=k^2\)\(\left(4\right)\)
Từ ( 3 ) và ( 4 ) \(\Rightarrow\frac{a^2-b^2}{c^2-d^2}=\frac{ab}{cd}\Rightarrow\frac{a^2-b^2}{ab}=\frac{c^2-d^2}{cd}\left(đpcm\right)\)
\(c,\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\left(5\right)\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{2a}{2c}=\frac{5b}{5d}=\frac{2a+5b}{2c+5d}\left(6\right)\)
TỪ ( 5 ) và ( 6 ) \(\Rightarrow\frac{a-b}{c-d}=\frac{2a+5b}{2c+5d}\left(đpcm\right)\)
a) \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{7a^2}{7c^2}=\frac{3b^2}{3d^2}=\frac{3ab}{3cd}=\frac{11a^2}{11c^2}=\frac{5b^2}{5d^2}\)
áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{7a^2}{7c^2}=\frac{3b^2}{3d^2}=\frac{3ab}{3cd}=\frac{11a^2}{11c^2}=\frac{5b^2}{5d^2}=\frac{7a^2+3ab}{7b^2+3cd}=\frac{11a^2-5b^2}{11c^2-5d^2}\)
\(\Rightarrow\frac{7a^2+3ab}{11a^2-5b^2}=\frac{7c^2+3cd}{11c^2-5d^2}\)
b) \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^4}{c^4}=\frac{b^4}{d^4}\)
áp dụng t.c dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a^4}{c^4}=\frac{b^4}{d^4}=\left(\frac{a+b}{c+d}\right)^4\)(1)
\(\frac{a^4}{c^4}=\frac{b^4}{d^4}=\frac{a^4+b^4}{c^4+d^4}\)(2)
từ (1) và (2) => đpcm
c) áp dụng t.c dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\Rightarrow\frac{a^2}{b^2}=\left(\frac{a+c}{b+d}\right)^2\)(1)
\(\frac{a^2}{b^2}=\frac{a}{b}\cdot\frac{a}{b}=\frac{a}{b}\cdot\frac{c}{d}=\frac{ac}{bd}\)(2)
từ (1) và (2) => đpcm
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{4a^4}{4c^4}=\frac{5b^4}{5d^4}\)
áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{4a^4}{4b^4}=\frac{5b^4}{5d^4}=\frac{4a^4+5b^4}{4b^4+5d^4}\)
\(\frac{4a^4}{4b^4}=\frac{a^4}{b^4}\)
vì \(\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^4}{c^4}=\frac{a}{c}\cdot\frac{b}{d}\cdot\frac{a}{c}\cdot\frac{b}{d}=\frac{a^2}{c^2}\cdot\frac{b^2}{d^2}\)
\(\frac{a^4}{c^4}=\frac{a^2}{c^2}\cdot\frac{b^2}{d^2}=\frac{4a^4+5b^4}{4c^4+5d^4}\left(đpcm\right)\)