Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{b}=\frac{c}{d}=\frac{3a}{3b}=\frac{2c}{2d}=\frac{3a+2c}{3b+2d}\)
a, Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk,c=dk\)'
Ta có: \(\frac{a}{b}=\frac{bk}{b}=k\left(1\right)\)
\(\frac{3a+2c}{3b+2d}=\frac{3bk+2dk}{3b+2d}=\frac{k\left(3b+2d\right)}{3b+2d}=k\left(2\right)\)
Từ (1) và (2) => đpcm
b, Đặt a/b=c/d=k => a=bk,c=dk
Ta có: \(\frac{a^2+c^2}{b^2+d^2}=\frac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\frac{b^2k^2+d^2k^2}{b^2+d^2}=\frac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\left(1\right)\)
\(\frac{ac}{bd}=\frac{bkdk}{bd}=k^2\left(2\right)\)
Từ (1) và (2) => đpcm
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{3a}{3c}=\frac{2b}{2d}\)
= \(\frac{3a-2b}{3c-2d}=\frac{3a+2b}{3c+2d}\)=> \(\frac{3a-2b}{3a+2b}=\frac{3c-2d}{3c+2d}\)
tíc mình nhé! Thanks
Đặt a/b=c/d=k=>a=kb;c=kd
Khi đó ta có:3a-2b/3a+2b=3kb-2b/3kb+2b=b(3k-2)/b(3k+2)=3k-2/3k+2 (1)
3c-2d/3c+2d=3kd-2d/3kd+2d=d(3k-2)/d(3k+2)=3k-2/3k+2 (2)
Từ (1) và (2) =>....
a) \(\hept{\begin{cases}\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{5a}{5c}=\frac{3b}{3d}=\frac{5a-3b}{5c-3d}\\\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{3a}{3c}=\frac{2b}{2d}=\frac{3a+2b}{3c+2d}\end{cases}}\)
\(\Rightarrow\frac{5a-3b}{5c-3d}=\frac{3a+2b}{3c+2d}\)
\(\Rightarrow\frac{5a-3b}{3a+2b}=\frac{5c-3d}{3c+2d}\)
b) Chứng minh tương tự
đặt a/b=c/d=k =>a=bk;c=dk
A)thay a và c vào (3a+2c)/(3b+2d)và (-5a+3c)/(-5b+3d)
+)(3bk+2dk)/(3b+2d)=k
+)(-5bk+3dk)/(-5b+3d)=k
vậy.....................................................................................................
B)thay a=bk;c=dk vào 2 biểu trên ta có
+)(bk-b)/b=k-1
+)(dk-d)/d=k-1
(bạn sai đề bài r chỗ a-d thành a-b)
Áp dụng tỉ lệ thức => a/b=c/d=(a-c)/(b-d) (1)
ta có : a/b=c/d
=> 3a/3b=2c/2d=(3a+2c)/(3b+2d) (2)
Từ(1)(2)=> (a-c)/(b-d)=(3a+2c)/(3b+2d) (điều phải chứng minh)