\(\frac{a}{b}=\frac{c}{d}\). CMR :\(\frac{2a+3b}{2c+3d}=\frac{a-...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2018

Ta có :

\(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\)\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)\(\left(1\right)\)

Ta lại có :

\(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\)\(\frac{a}{c}=\frac{b}{d}\)\(\Rightarrow\)\(\frac{2a}{2c}=\frac{3b}{3d}=\frac{2a+3b}{2c+3d}\)\(\left(2\right)\)

Từ \(\left(1\right)\)và \(\left(2\right)\) suy ra \(\frac{2a+3b}{2c+3d}=\frac{a-b}{c-d}\)

Vậy ...

21 tháng 1 2018

Áp dụng TCDTSBN ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\) (vì a+b+c+d khác 0)

=>a=b=c=d

=>M=\(\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{1}{2}\cdot4=2\)

23 tháng 1 2018

Ta có:a/b=b/c=c/d=d/a

Áp dụng tính chất dãy tỉ số bằng nhau, ta được:a/b=b/c=c/d=(a+b+c+d)/(b+c+d+a)=1

=>a=b=c=d(vì a/b=b/c=c/d=d/a=1)

Thay vào M sau đó tìm được M=2

21 tháng 6 2018

a) nhân 2 hai vế: \(\frac{2a}{b}=\frac{2c}{d}\) 

cộng 1 cả hai vế: \(\frac{2a}{b}+1=\frac{2c}{d}+1\)

\(\frac{2a+b}{b}=\frac{2c+d}{d}\)

b) Tính chất tỉ lệ thức:  \(\frac{a}{b}=\frac{c}{d}hay\frac{a}{c}=\frac{b}{d}\)

Nhân 2 và 3 lần lượt cho cả hai vế: \(\frac{2a}{2c}=\frac{3b}{3d}\)

Dãy tỉ số bằng nhau: \(\frac{2a}{2c}=\frac{3b}{3d}=\frac{2a-3b}{2c-3d}=\frac{2a+3b}{2c+3d}\)

áp dụng tính chất tỉ lệ thức: \(\frac{2a-3b}{2a+3b}=\frac{2c-3d}{2c+3d}\)

Nhớ k cho mình nhe :)

21 tháng 6 2018

a, Ta có : 2a + b / b = 2a/b + b/b .

                                = 2 . a/b + 1 .

                                = 2 . c/d + 1 . ( vì a/b = c/d ) .

                                = 2c/d + d/d .

                                = 2cd + d / d.d 

                                = d . ( 2c + d ) / d .d 

                                =   2c + d / d

Vậy bài toán được chứng minh .

 Em chỉ làm được đến đó thôi . 

5 tháng 11 2017

a) đặt \(\frac{a}{b}=\frac{c}{d}=k\)

=>a=bk

c=dk

ta có \(\frac{2a}{+3b2a-3b}=\frac{2bk+3b}{2bk-3b}=\frac{b\left(2k+3\right)}{b\left(2k-3\right)}=\frac{2k+3}{2k-3}\left(1\right)\)

\(\frac{2c+3d}{2c-3d}=\frac{2dk+3d}{2dk-3d}=\frac{d\left(2k+3\right)}{d\left(2k-3\right)}=\frac{2k+3}{2k-3}\left(2\right)\)

từ (1) và(2) ta có\(\frac{2a+3b}{2a-3b}=\frac{2c+3d}{2c-3d}\)

b)

đặt\(\frac{a}{b}=\frac{c}{d}=k\)

ta có\(\frac{ab}{ad}=\frac{bk.b}{dk.d}=\frac{kb^2}{kd^2}=\frac{b^2}{d^2}\left(1\right)\)

\(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{b^2k^2+b^2}{d^2k^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{b^2}{d^2}\left(2\right)\)

từ (1) và(2) \(\Rightarrow\frac{ab}{cd}=\frac{\left(a+b\right)^2}{\left(c+d^2\right)}\)

5 tháng 11 2017

ban kia lam dung roi do 

k tui nha

thanks

\(c=\frac{bd}{b-d}\Rightarrow bc-dc=bd\Rightarrow bc=bd+dc=d\left(b+c\right)\)

Mà \(a=b+c\)nên\(bc=ad\Rightarrow\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}=\frac{c}{d}=\frac{2a}{2b}=\frac{2c}{2d}=\frac{5a}{5b}\)

ÁP DỤNG TÍNH CHẤT DÃY TỈ SỐ BẰNG NHAU 

\(\frac{2a+2c}{2b+2d}=\frac{5a-c}{5b-d}\)

MÌNH SỬA LẠI ĐỀ LÀ 3D THÀNH 2D NHÉ

23 tháng 11 2016

nhanh nhanh nhayeu nha nha mai nộp rùi nha nha hehe

23 tháng 11 2016

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk,c=dk.\)

Ta có: \(\frac{2a+3b}{a+b}=\frac{2bk+3b}{bk+b}=\frac{b\left(2k+3\right)}{b\left(k+1\right)}=\frac{2k+3}{k+1}\left(1\right)\)

\(\frac{2c+3d}{c+d}=\frac{2dk+3d}{dk+d}=\frac{d\left(2k+3\right)}{d\left(k+1\right)}=\frac{2k+3}{k+1}\left(2\right)\)

Từ (1) và (2) ta suy ra: 2a+3ba+b=2c+3dc+d (đpcm)haha

13 tháng 12 2017

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}+1=\frac{c}{d}+1\Rightarrow\frac{a+b}{b}=\frac{c+d}{d}.\)

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{2a}{2c}=\frac{3b}{3d}\Rightarrow\frac{2a+3b}{2c+3d}=\frac{2a-3b}{2c-3d}\)(T/c dãy tỷ số bằng nhau)

\(\Rightarrow\frac{2a+3b}{2a-3b}=\frac{2c+3d}{2c-3d}\)

26 tháng 2 2017

Ta có:\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{2a}{b}=\frac{2c}{d}\)

Đặt:\(\frac{2a}{b}=\frac{2c}{d}=k\left(k\ne0\right)\)

=> 2a=bk; 2c=dk

Ta có:\(\frac{2a+3b}{2a-3b}=\frac{bk+3b}{bk-3b}=\frac{b\left(k+3\right)}{b\left(k-3\right)}=\frac{k+3}{k-3}\left(1\right)\)

\(\frac{2c+3d}{2c-3d}=\frac{dk+3d}{dk-3d}=\frac{d\left(k+3\right)}{d\left(k-3\right)}=\frac{k+3}{k-3}\left(2\right)\)

Từ \(\left(1\right)và\left(2\right)\Rightarrow\frac{2a+3b}{2a-3b}=\frac{2c+3d}{2c-3d}\)

Vậy...