K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2020

Đặt \(\frac{a}{b}=\frac{c}{d}=k\\ =>\orbr{\begin{cases}a=bk\\c=dk\end{cases}}\)

\(Taco:\left(a+2c\right).\left(b+d\right)=\left(a+c\right).\left(b+2d\right)\)

\(=>\left(bk+2dk\right).\left(b+d\right)=\left(bk+dk\right).\left(b+2d\right)\)

\(=>\frac{bk+2dk}{bk+dk}=\frac{b+2d}{b+d}\)

\(=>\frac{k.\left(b+2d\right)}{k.\left(b+d\right)}=\frac{b+2d}{b+d}\)

\(=>\frac{b+2d}{b+d}=\frac{b+2d}{b+d}\)(ĐPCM)

, Chờ tí mk làm câu b

18 tháng 2 2020

        Ta có :\(\frac{a}{b}=\frac{c}{d}\)

\(\implies\)\(\frac{a}{b}=\frac{c}{d}=\frac{2c}{2d}=\frac{a+2c}{b+2d}\left(1\right)\)                                                                                                                                            \(\implies\)   \(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\left(2\right)\)

Từ (1);(2)\(​​​\implies\) \(\frac{a+2c}{b+2d}=\frac{a+c}{b+d}\)  

                 \(\implies\) \(\left(a+2c\right).\left(b+d\right)=\left(b+2d\right).\left(a+c\right)\)