Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
Gọi số hs bốn khối 6,7,8,9 lần lượt là a,b,c,d
Vì a,b,c,d tỉ lệ với 9;8;7;6 nên \(\frac{a}{9}=\frac{b}{8}=\frac{c}{7}=\frac{d}{6}\) và b - d = 70
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{9}=\frac{b}{8}=\frac{c}{7}=\frac{d}{6}=\frac{b-d}{8-6}=\frac{70}{2}=35\)
=> a = 35.9 = 315 ; b = 35.8 = 280 ; c = 35.7 = 245 ; d = 210
Vậy số học sinh mỗi khối lần lượt là 315,280,245 và 210
kêu bn nhất sông núi ra chỉ cho vì phạm văn nhất chính là nhất sông núi mà
\(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)\(\Rightarrow\frac{a+b}{c+a}=\frac{a-b}{c-a}\)
\(\frac{a+b}{c+a}=\frac{a-b}{c-a}=\frac{\left(a+b\right)+\left(a-b\right)}{\left(c+a\right)+\left(c-a\right)}=\frac{2a}{2c}=\frac{a}{c}\)( 1 )
\(\frac{a+b}{c+a}=\frac{a-b}{c-a}=\frac{\left(a+b\right)-\left(a-b\right)}{\left(c+a\right)-\left(c-a\right)}=\frac{2b}{2a}=\frac{b}{a}\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{a}{c}=\frac{b}{a}\)
Ta có:\(\frac{a}{b}\)=\(\frac{c}{d}\)\(\Rightarrow\)\(\frac{a}{c}\)=\(\frac{b}{d}\)
Đặt \(\frac{a}{c}\)=\(\frac{b}{d}\)=k (k\(\in\)Z)\(\Rightarrow\)\(\hept{\begin{cases}a=ck\\b=dk\end{cases}}\)
\(\Rightarrow\)\(\frac{a+b}{a-b}\)=\(\frac{ck+dk}{ck-dk}\)=\(\frac{k}{k}\).\(\frac{c+d}{c-d}\)=\(\frac{c+d}{c-d}\)
Vậy ta đã chứng minh được \(\frac{a+b}{a-b}\)=\(\frac{c+d}{c-d}\)
Gọi số tiền vốn là a,b,c
ĐK: a,b,c < 6300
a, b, c thuộc N sao
Theo đề ta có:
a/5 = b/7 = c/9
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
a/5 = b/7 = c/9 = a+b+c/5+7+9=6300/21=300
a/5=300 => a=5.300=1500
b/7=300 => b=7.300=2100
c/9=300 => c=9.300=2700
Ta có :
\(\frac{a+b}{a-b}=\frac{c+a}{c-a}\text{ }\Rightarrow\text{ }\frac{a+b}{c+a}=\frac{a-b}{c-a}=\frac{\left(a+b\right)+\left(a-b\right)}{\left(c+a\right)+\left(c-a\right)}=\frac{2a}{2c}=\frac{a}{c}\text{ }\left(1\right)\)
Mặt khác :
\(\frac{a+b}{c+a}=\frac{a-b}{c-a}=\frac{\left(a+b\right)-\left(a-b\right)}{\left(c+a\right)-\left(c-a\right)}=\frac{2b}{2a}=\frac{b}{a}\text{ }\left(2\right)\)
Từ ( 1 ) và ( 2 ) suy ra \(\frac{a}{c}=\frac{b}{a}\)